首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the effect of air curing, water curing and steam curing on the compressive strength of Self Compacting Concrete (SCC). For experimental study, SCC is produced with using silica fume (SF) instead of cement by weight, by the ratios of 5%, 10% and 15%, and fly ash (FA) with the ratios of 25%, 40% and 55%. It is observed that mineral admixtures have positive effects on the self settlement properties. The highest compressive strength was observed in the concrete specimens with using 15% SF and for 28 days water curing. Air curing caused compressive strength losses in all groups. Relative strengths of concretes with mineral admixtures were determined higher than concretes without admixtures at steam curing conditions.  相似文献   

2.
The paper presented herein investigates the effects of using supplementary cementitious materials in binary, ternary, and quaternary blends on the fresh and hardened properties of self-compacting concretes (SCCs). A total of 22 concrete mixtures were designed having a constant water/binder ratio of 0.32 and total binder content of 550 kg/m3. The control mixture contained only portland cement (PC) as the binder while the remaining mixtures incorporated binary, ternary, and quaternary cementitious blends of PC, fly ash (FA), ground granulated blast furnace slag (GGBFS), and silica fume (SF). After mixing, the fresh properties of the concretes were tested for slump flow time, L-box height ratio, V-funnel flow time, setting time, and viscosity. Moreover, compressive strength, ultrasonic pulse velocity, and electrical resistivity of the hardened concretes were measured. Test results have revealed that incorporating the mineral admixtures improved the fresh properties and rheology of the concrete mixtures. The compressive strength and electrical resistivity of the concretes with SF and GGBFS were much higher than those of the control concrete.  相似文献   

3.
This paper presents a laboratory study on the influence of combination of fly ash (FA) and ground granulated blast-furnace slag (GGBS) on the properties of high-strength concrete. A contrast study was carried out for the concrete (GGFAC) incorporating FA and GGBS, control Portland cement concrete and high-volume FA high-strength concrete (HFAC). Assessments of the concrete mixes were based on short- and long-term performance of concrete. These included compressive strength and resistance to H2SO4 attack. The microstructure of the concretes at the age of 7 days and 360 days was also studied by using scanning electron microscope. The results show that the combination of FA and GGBS can improve both short- and long-term properties of concrete, while HFAC requires a relatively longer time to get its beneficial effect.  相似文献   

4.
An experimental investigation was conducted to evaluate the performance of metakaolin (MK) concrete at elevated temperatures up to 800 °C. Eight normal and high strength concrete (HSC) mixes incorporating 0%, 5%, 10% and 20% MK were prepared. The residual compressive strength, chloride-ion penetration, porosity and average pore sizes were measured and compared with silica fume (SF), fly ash (FA) and pure ordinary Portland cement (OPC) concretes. It was found that after an increase in compressive strength at 200 °C, the MK concrete suffered a more severe loss of compressive strength and permeability-related durability than the corresponding SF, FA and OPC concretes at higher temperatures. Explosive spalling was observed in both normal and high strength MK concretes and the frequency increased with higher MK contents.  相似文献   

5.
This paper presents the transport and mechanical properties of self consolidating concrete that contain high percentages of low-lime and high-lime fly ash (FA). Self consolidating concretes (SCC) containing five different contents of high-lime FA and low-lime FA as a replacement of cement (30, 40, 50, 60 and 70 by weight of total cementitious material) are examined. For comparison, a control SCC mixture without any FA was also produced. The fresh properties of the SCCs were observed through, slump flow time and diameter, V-funnel flow time, L-box height ratio, and segregation ratio. The hardened properties included the compressive strength, split tensile strength, drying shrinkage and transport properties (absorption, sorptivity and rapid chloride permeability tests) up to 365 days. Test results confirm that it is possible to produce SCC with a 70% of cement replacement by both types of FA. The use of high volumes of FA in SCC not only improved the workability and transport properties but also made it possible to produce concretes between 33 and 40 MPa compressive strength at 28 days, which exceeds the nominal compressive strength for normal concrete (30 MPa).  相似文献   

6.
In this paper, the effects of high temperature exposure of recycled aggregate concretes in terms of residual strengths, capillary water absorption capacity and pore size distribution are discussed. Two mineral admixtures, fly ash (FA) and ground granulated blast furnace (GGBS) were used in the experiment to partially replace ordinary Portland cement for concrete production. The water to cementitious materials ratio was maintained at 0.50 for all the concrete mixes. The replacement levels of natural aggregates by recycled aggregates were at 0%, 50% and 100%. The concretes were exposed separately to 300 °C, 500 °C and 800 °C, and the compressive and splitting tensile strength, capillary water coefficient, porosity and pore size distribution were determined before and after the exposure to the high temperatures. The results show that the concretes made with recycled aggregates suffered less deteriorations in mechanical and durability properties than the concrete made with natural aggregates after the high temperature exposures.  相似文献   

7.
This study reports the finding of an experimental study carried out on the durability related properties of the lightweight concretes (LWCs) including either cold bonded (CB) or sintered (S) fly ash aggregates. CB aggregate was produced with cold bonding pelletization of class F fly ash (FA) and Portland cement (PC) while S aggregate was produced by sintering the fresh aggregate pellets manufactured from FA and bentonite (BN). Two concrete series with water-to-binder (w/b) ratios of 0.35 and 0.55 were designed. Moreover, silica fume (SF) with 10% replacement level was also utilized for the purpose of comparing the performances of LWCs with and without ultrafine SF. The durability properties of concretes composed of CB and S aggregates were evaluated in terms of water sorptivity, rapid chloride ion permeability, gas permeability, and accelerated corrosion testing after 28 days of water curing period. The compressive strength test was also applied to observe the strength level at the same age. The results revealed that S aggregate containing LWCs had relatively better performance than LWCs with CB aggregates. Moreover, the incorporation of SF provided further enhancement in permeability and corrosion resistance of the concretes.  相似文献   

8.
Self-compacting repair mortars (SCRM) are preferred for the rehabilitation and repair of reinforced concrete structures especially at narrow mould systems. Self compactability and stability are susceptible to ternary effects of chemical and mineral admixture type and their content. In this study, the effect of limestone powder (LP) on the properties of SCRM has been compared with other mineral additives (silica fume (SF) and fly ash (FA) and their combinations) effects. Fresh properties, flexural and compressive strengths and water absorption properties of mortars were determined. The use of SF in mortars significantly increased the dosage of superplasticiser (SP). At the same constant SP dosage (0·8%) and mineral additives content (30%), LP can better improve the workability than that of control and FA mixtures by 19% and 27%. However, the results of this study suggest that certain FA, SF and LP combinations can improve the workability of SCRMs, more than FA, SF and LP alone. LP can have a positive influence on the mechanical performance at early strength development while SF improved aggregate-matrix bond resulting from the formation of a less porous transition zone in mortar. SF can better reducing effect on total water absorption while FA and LP will not have the same effect, at 28 days.  相似文献   

9.
The demand for lightweight concrete is steadily increasing because of economic and practical considerations. Hence, the inherent internal and external features of lightweight aggregates have been a subject of intense research in recent years. This study provides new insight into the micro-structural and chemical factors which influence the strength properties of structural lightweight aggregate concrete. These are described with respect to four expanded clay lightweight aggregates used in nine concrete compositions containing various types and proportions of dispersing agents such as water-reducing admixtures and superplasticizers, with silica fume and ground granulated blast-furnace slag as optional mineral admixtures. The microstructural characteristics of the paste-aggregate interface and the paste porosity of these concretes are discussed. The methods used include scanning electron microscopy-energy-dispersive X-ray analysis, X-ray diffraction analysis, optical microscopy and compressive strength testing.  相似文献   

10.
Corrosion of steel in concrete is one of the major causes of premature deterioration of reinforced concrete structures, leading to structural failure. To prevent the failure of concrete structures because of corrosion, impermeable and high performance concretes should be produced various mineral admixtures. In this study, plain and reinforced concrete members are produced with mineral admixtures replacing cement. Ground granulated blast-furnace slag (GGBFS) has replaced cement as mineral admixture at the ratios of 0%, 25% and 50%. The related tests have been conducted at the ages of 28 and 90, after exposing these produced plain and reinforced concrete members to two different curing conditions. The unit weight, ultrasonic pulse velocity, splitting tensile and compressive strength tests are conducted on plain concrete members. Half-cell potential and accelerated corrosion tests are also conducted on reinforced concrete members. According to the test results, it is concluded that the curing age and type are important and corrosion resistant concrete can be produced by using GGBFS mineral admixture at the ratio of 25%.  相似文献   

11.
This study addressed the effect of calcium nitrite based corrosion inhibitor (CNI) and fly ash (FA) on the long-term compressive strength of high performance concrete (HPC). A 33 full factorial design was developed to evaluate the influence of CNI at addition rates of 0, 12.5 and 25 L/m3 on the compressive strength of HPC manufactured with 8% silica fume blended cement in combination with 0%, 20% and 40% FA replacements and mixed at 0.29, 0.37 and 0.45 water to cementing materials ratios (w/cm). Standard 100 × 200 mm cylinders were prepared and tested for compressive strength at 28 days and 1 year. The 9-year old concrete specimens were obtained from small-scale reinforced concrete slabs that were exposed to a marine environment. Results indicate that the interaction of CNI and FA does not adversely affect the short and long term compressive strength of concrete. In fact, an enhancement on the compressive strength was observed in concretes containing such combination even after long-term exposure to a marine environment.  相似文献   

12.
This paper presents the results of an experimental study on the fresh properties of the self-compacting lightweight concretes made with cold bond fly ash (FA) lightweight aggregates. Binary and ternary use of FA and silica fume (SF) blends have been investigated in the production of self-compacting cold bonded FA lightweight aggregate concretes (SCLWCs). A total of 9 SCLWC mixtures were proportioned having constant water-binder ratio of 0.35 and the total binder content of 550?kg/m3. The control mixture contained only Portland cement (PC) as the binder while the remaining mixtures incorporated binary and ternary blends of PC, FA, and SF. After mixing, the fresh properties of the SCLWC were tested for T 500 slump flow time, slump-flow diameter, V-funnel flow time and L-box height ratio. The fresh properties of SCLWCs with and without mineral admixtures were also evaluated by statistical technique, namely GLM-ANOVA. The results indicated that the combination use of FA and SF together decreased the slump flow time and V-funnel flow time. L-box height ratio, on the other hand, improved significantly.  相似文献   

13.
炭纤维增强混凝土能用来感知温度,其因在于短炭纤维的P-型传导性引起的塞贝克(Seebeck)效应所致.通过测量添加炭纤维或矿质掺和物(飞灰、硅土粉)前后六种波特兰水泥基混凝土的热电功率,研究了炭纤维增强轻质混凝土热敏的能力及其矿质掺合物对Seebeck效应的影响.结果表明: 炭纤维增强轻质混凝土具有类似于炭纤维增强标准混凝土的Seebeck效应,只是Seebeck系数因掺合了矿粉而减低.掺有矿粉的炭纤维增强轻质混凝土可用作建筑物的热传感器.  相似文献   

14.
The effect of silica fume (SF), metakaolin (MK), fly ash (FA) and ground granulated blast-furnace slag (GGBS) on the setting times of high-strength concrete has been investigated using the penetration resistance method (ASTM C 403). In addition, the effect of a shrinkage-reducing admixture (SRA) on the setting times of normal and high-strength concrete was also studied. The setting times of the high-strength concrete were generally retarded when the mineral admixtures replaced part of the cement. While the SRA was found to have negligible effect on the setting times of normal strength concrete, it exhibited a rather significant retarding effect when used in combination with superplasticiser in high-strength concrete. The inclusion of GGBS at replacement levels of 40% and greater resulted in significant retardation in setting times. In general, as replacement levels of the mineral admixtures were increased, there was greater retardation in setting times. However, for the concrete containing MK, this was only observed up to a replacement level of 10%.  相似文献   

15.
Natural zeolite, a type of frame-structured hydrated aluminosilicate mineral, is used abundantly as a type of natural pozzolanic material in some regions of the world. In this work, the effectiveness of a locally quarried zeolite in enhancing mechanical and durability properties of concrete is evaluated and is also compared with other pozzolanic admixtures. The experimental tests included three parts: In the first part, the pozzolanic reactivity of natural zeolite and silica fume were examined by a thermogravimetric method. In this case, the results indicated that natural zeolite was not as reactive as silica fume but it showed a good pozzolanic reactivity. In the second part, zeolite and silica fume were substituted for cement in different proportions in concrete mixtures, and several physical and durability tests of concrete were performed. These experimental tests included slump, compressive strength, water absorption, oxygen permeability, chloride diffusion, and electrical resistivity of concrete. Based on these results, the performance of concretes containing different contents of zeolite improved and even were comparable to or better than that of concretes prepared with silica fume replacements in some cases. Finally, a comparative study on effect of zeolite and fly ash on limiting ASR expansion of mortar was performed according to ASTM C 1260 and ASTM C 1567. Expansion tests on mortar prisms showed that zeolite is as effective as fly ash to prevent deleterious expansion due to ASR.  相似文献   

16.
There are many different test methods to assess reinforced concrete durability. As in marine environment reinforcement corrosion due to chloride attack is the most important degradation process, chloride penetration rate has been compared with different durability tests results (concrete strength, porosity, water absorption, water penetration depth under pressure, capillarity, water and oxygen permeability) carried out on concrete cores obtained from the caissons of seven Spanish wharves. Data have been studied separately, depending on concrete location (chloride penetration rate is faster in submerged concretes than in tidal zone concretes) and cement type (mineral admixtures reduce permeation rate due to pore size refinement). Results show that it is advisable to control concrete water tightness through water penetration under pressure test; additionally, in order to make sure a slow corrosion rate, it should be advisable to control oxygen permeability in tidal zone concretes.  相似文献   

17.
In this study, nine different types of concrete were adopted: normal concrete (NC) with low slump (68 mm) and eight types of self-compacting concrete (SCC) in which cement was partially replaced by four kinds of replacements (25%, 30%, 35% and 40%) of class F fly ash (FA) and by four kinds of replacements (5%, 10%, 15% and 20%) of silica fume (SF). The main objective of this research was to evaluate the effect of different types and dosages of mineral additions on the moment capacities and stiffnesses of the beam specimens and the bond strength of tension lap-spliced bars embedded in NC and self-compacting concretes (SCCs). To achieve these objectives, 27 full-scale beam specimens (2000 × 300 × 200 mm) were tested. In all beam specimens, 20 mm reinforcing bars were used with a 300 mm splice length as tension reinforcement. The variable used was the amount of FA and SF incorporated into SCC. Each beam was designed with bars spliced in a constant moment region at midspan. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. Moreover, bond strength of SCC beams was compared to that of NC beams of the same dimensions, steel configuration and approximately the same water-to-cement ratio. In conclusion, the beam specimens produced from SCC containing 5% SF and 30% FA had the highest normalized bond strength with 1.07 whilst the replacements of Portland cement (PC) by an equal weight of FA or SF in SCC had generally the positive effect on the bond strength of reinforcing bar regardless of the dosage of mineral admixture compared to the specimen with NC indicating that SCC due to its superior filling capability more effectively covered the reinforcements and the grain-size distribution and particle packing improved ensuring greater cohesiveness. Moreover, the beam specimens produced from SCC with SF had the greatest stiffness compared to other all beams as result of the improvement of concrete pore structure due to the pozzolanic activity and the filler effect of high fineness silica fume.  相似文献   

18.
The link between flow properties and the formulation is actually one of the key-issues for the design of self-compacting concretes (SCC). As an integral part of a SCC, self-compacting mortars (SCMs) may serve as a basis for the design of concrete since the measurement of the rheological properties of SCCs is often impractical due to the need for complex equipment. This paper discusses the properties of SCMs with mineral admixtures. Portland cement (PC), metakaolin (MK), and fly ash (FA) were used in binary (two-component) and ternary (three-component) cementititios blends. Within the frame work of this experimental study, a total of 16 SCMs were prepared having a constant water-binder (w/b) ratio of 0.40 and total cementitious materials content of 550 kg/m3. Then, the fresh properties of the mortars were tested for mini-slump flow diameter, mini-V-funnel flow time, setting time, and viscosity. Moreover, development in the compressive strength and ultrasonic pulse velocity (UPV) of the hardened mortars were determined at 1, 3, 7, 14, and 28 days. Test results have shown that using of FA and MK in the ternary blends improved the fresh properties and rheology of the mixtures when compared to those containing binary blends of FA or MK.  相似文献   

19.
An experimental study was conducted to investigate the effects of using binary, ternary, and quaternary cementitious blends of portland cement (PC), fly ash (FA), ground granulated blast furnace slag (GBS), silica fume (SF), and metakaolin (MK) on initial and final setting times of self-compacting concretes (SCCs). For this purpose, a total of 65 SCC mixtures were prepared at two different water binder ratios. Furthermore, based on the experimental results, neural network (NN) model-based explicit formulations were developed to predict the initial and final setting times of SCCs in terms of the amount of concrete constituents, namely mixing water, PC, FA, GBS, SF, MK, fine (fa) and coarse (ca) aggregates, and superplasticizer (SP). The test results have revealed that the mineral admixtures were very effective on the initial and final setting times of SCCs. Besides, it was found that the model developed by using NN seemed to have a high prediction capability of initial and final setting times of SCCs.  相似文献   

20.
The paper examines the properties of five different types of repair materials, including conventional cementitious, polymer and polymer-modified repair mortars. Assessment was carried out on the basis of the engineering properties (compressive strength, tensile strength and modulus of elasticity), pore structure (porosity and pore size distribution), transport properties (permeability and diffusion) and shrinkage. These properties were measured up to the age of 28 days after curing in a hot-dry environment.

The epoxy resin repair mortar showed superior strength and transport characteristics with a very fine pore structure; however, its modulus of elasticity was remarkably low when compared with that of normal- and high-strength concretes. A hot-dry curing environment adversely affects the shrinkage and performance-related properties of conventional repair mortars; however, small improvements could be achieved by the use of mineral admixtures (fly ash and silica fume). The paper discusses also the different testing techniques which could be used to assess the potential performance of concrete repair mortars.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号