首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branched polyethyleneimine (PEI) functionalized UiO-66 were synthesized and used as fillers to fabricated mixed-matrix membranes (MMMs) for CO2/CH4 separation. The purpose of introducing amino-functional groups in the filler is to improve the interfacial compatibility of the filler with the polymer through the formation of hydrogen bonds with the carbonyl group of 6FDA-ODA. Additionally, the amino group can facilitate CO2 transport through a reversible reaction, enhancing the CO2/CH4 separation properties of MMM. The chemical structure and morphology of fillers and membranes were characterized by employing X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), thermogravimetric (TGA), Derivative thermogravimetry (DTG) and scanning electron microscope (SEM). Furthermore, the effects of filler loading and feed pressure on CO2 permeability and CO2/CH4 selectivity have been investigated. MMMs present higher gas separation performance than pure 6FDA-ODA due to the presence of amino groups and the improvement of interface morphology. In particular, the MMM with 15 wt% loading of UiO-66-PEI shows optimum CO2 permeability of 28.23 Barrer and CO2/CH4 selectivity of 56.49. Therefore, post-synthetic modification of UiO-66 particle with PEI is a promising alternative to improved membrane performance.  相似文献   

2.
《Polymer Composites》2017,38(7):1363-1370
Mixed matrix membranes offer major advantages in gas separation processes due to desirable properties found in both organic and inorganic membranes. In this study, a novel mixed matrix membrane was prepared for such application by incorporating iron benzene‐1,3,5‐tricarboxylate (Fe‐BTC) into the poly(amide‐6‐b‐ethylene oxide) (Pebax1657) polymer. Membranes with various loadings of 5, 10, and 20 wt% Fe‐BTC in the polymer matrix were fabricated to investigate the effect of filler loading on the membrane performance. Membranes, prepared by solution‐casting were characterized by scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared, X‐ray diffraction, and tensile test. Pure gas separation of CO2, CH4, and N2 and ideal gas selectivity of CO2/CH4 and CO2/N2 were performed and permeation tests were carried out under 4, 8, and 12 bar pressures. Results show that adding Fe‐BTC into the Pebax1657 matrix improved both permeability and selectivity of the filled membranes. For instance, 10 wt% loading of Fe‐BTC into the Pebax1657 matrix led to CO2 permeability increase of 49% as well as CO2/CH4 and CO2/N2 selectivities enhancements of about 36% and 16%, respectively. POLYM. COMPOS., 38:1363–1370, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
SAPO-34 nanocrystals (inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO2, CH4, and N2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes (MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO2, CH4, and N2, respectively, as compared to the permeability of neat polyurethane membrane. Also, the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO2/CH4 and CO2/N2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression (PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy (R2 > 99%).  相似文献   

4.
《分离科学与技术》2012,47(15):2375-2383
Poly(ether-b-amide) (PEBA)/Tween20 gel membranes containing from 0 wt% to 65 wt% of Tween20 in PEBA2533, PEBA3533, and PEBA4033 were prepared by solvent casting method for CO2/N2 separation. The gas separation properties of the polymeric gel membranes were tested for single gases of CO2 and N2 at 25°C with the feed pressure of 0.6 atm. For all pure PEBA membranes, CO2 and N2 permeability decreased as the amount of polyamide block increased, but CO2/N2 selectivity increased. For PEBA/Tween20 gel membranes, both the CO2 permeability and CO2/N2 selectivity were greatly enhanced with the increase of Tween20 content. For the membrane of PEBA4033/Tween20-65, CO2/N2 selectivity, and CO2 permeability reached 54 and 146 Barrer, respectively, which is very interesting for potential application in CO2 removal from flue gas.  相似文献   

5.
Mixed matrix membranes (MMMs) were prepared by solvent evaporation method using Pebax-1074 polymer as matrix and inorganic zeolite SAPO-23 as dopant. The morphology, surface functional groups, microstructure, thermal stability, and separation performance of MMMs were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and gas permeation, respectively. The effects of dopant loading amount, permeation temperature, and permeation pressure on the structure and properties of MMMs were investigated. The results showed that the introduction of SAPO zeolite reduced the crystallinity of the MMMs and improved the CO2/N2 selectivity. Under the conditions of 30°C and 0.15 MPa, the MMMs prepared by incorporating with 5% SAPO zeolite in content exhibited the highest CO2/N2 selectivity of 72.0 together with the CO2 permeability of 98.2 Barrer.  相似文献   

6.
[Cellulose acetate (CA)-blend-multi walled carbon nano tubes (MWCNTs)] mixed matrix membranes (MMMs), [CA/polyethylene glycol (PEG)/MWCNTs] and [CA/styrene butadiene rubber (SBR)/MWCNTs] blend MMMs were prepared by solution casting method for gas separation applications using Tetrahydrofuran (THF) as solvent. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxylic-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas separation performance of prepared membranes were investigated for pure He, N2, CH4 and CO2 gases. Results indicated that utilizing C-MWCNT instead of R-MWCNTs in membrane fabrication has better performance and (CO2/CH4) and (CO2/N2) selectivity reached to 21.81 and 13.74 from 13.41 and 9.33 at 0.65 wt% of MWCNTs loading respectively. The effects of PEG and SBR on the gas transport performance and mechanical properties were also investigated. The highest CO2/CH4 selectivity at 2 bar pressure was reached to 53.98 for [CA/PEG/C-MWCNT] and 43.91 for [CA/SBR/C-MWCNT] blend MMMs at 0.5 wt% and 2 wt% MWCNTs loading ratio respectively. Moreover, increase of feed pressure led to membrane gas permeability and gas pair selectivity improvement for almost all prepared membranes. The mechanical properties analysis exhibited tensile modules improvement with increasing MWCNTs loading ratio and utilizing polymer blending.  相似文献   

7.
In the past decades, gas separation using polymeric membranes has received considerable attention and become one of the fastest growing research areas. However, existing polymeric membranes may not be able to keep up with the increasing separation needs for challenging gas mixtures such as N2/CH4 and light olefin/paraffin pairs on industrial scale due to their so-called permeability-selectivity bound. On the other hand, scaling-up issues poise huge challenges for highly permeable and highly selective inorganic membranes. Mixed-matrix membranes, composite membranes, provide an evolutionary solution to debottleneck the permeability-selectivity and scale-up issues currently faced by polymeric and inorganic membranes, respectively. Inorganic fillers in mixed-matrix membranes improve gas permeability and/or selectivity, outperforming polymeric membranes. Combined with relatively economical and simple scaling-up compared to inorganic membranes, mixed-matrix membranes could potentially be a next-generation membrane concept for gas separation applications. This review provides a brief summary on the recent progress in both flat sheet and hollow fiber mixed-matrix membranes with an emphasis on those made over the last five years. A separate section is dedicated to discussing engineering challenges transitioning from laboratory-scale to large-scale synthesis of mixed-matrix membranes. Finally, future prospects and perspectives in mixed-matrix membranes research are briefly outlined.  相似文献   

8.
Mixed-matrix membranes (MMMs) comprising polysulfone (PSF) and zeolite 4A (Z4A) were prepared for carbon capture applications. Membranes of varying compositions were fabricated by solution casting technique. Viscous solutions of dissolved ingredients were cast on a clean glass plate followed by evaporation and drying of prepared membrane. Fabricated composite membranes were subjected to morphological, structural, and permeation analyzes. The morphological results showed a uniform dispersal of zeolite nanoparticles with agglomerates formation at higher nanofiller loadings. The structural analysis corroborated the noninteractive behaviour of organic polymer and inorganic zeolite phases. Permeation results suggested that the fabricated membranes were more permeable to CO2 gas, which can be described by higher diffusivity and structural affinity for CO2. Taguchi statistical analysis was employed to optimize carbon capture performance of developed hybrid membranes by carefully controlling the membrane casting parameters such as loading levels of functional nanofiller, sonication time, and drying time of casting solution. The statistical investigation of permeation results suggested the sensitivity of casting parameters on membrane performance in the following manner: zeolite loading > sonication time > drying time. The optimized membrane casting parameters obtained from signal-to-noise ratio analysis performed on Minitab led to synthesis of a composite membrane with both high CO2/N2 selectivity and CO2 permeability. The chosen technique also assisted in justifying the dependence of permeation results on various membrane casting parameters, associating it with the morphological results. The technique also facilitated the optimization of the membrane characteristics and is recommended for future study based on membrane separation processes.  相似文献   

9.
The increasing need for more efficient separation processes has motivated the development of polymer membranes that can provide fast and selective transport. In this work, cadmium-based metal–organic framework (MOF) nanoparticles and a polyurethane–urea (PUU) elastomer were synthesized. New mixed-matrix membranes (MMMs) were then fabricated from the nanoparticles and the PUU. SEM images verified that embedding the nanoparticles changes the morphology of the PUU and the nanoparticles disperse well in the PUU due to satisfactory compatibility of the polymer and nanoparticles. Fourier transform infrared spectroscopy and X-ray diffraction analysis confirmed the dispersion of the nanoparticles in the soft segment of the PUU. With increased temperature, gas permeabilities of the MMMs improved but their sieving ability deteriorated. An MMM incorporating 2.5 wt % of the MOF showed a CO2 permeability of ~140 barrer and a CO2/N2 selectivity of ~30, which are 89 and 38% higher than those of the pristine membrane. Gas permeation tests showed that the higher CO2/N2 selectivity of the MMMs was due to improved solubility selectivity and the higher CO2 permeability was a result of improved CO2 diffusivity and solubility coefficients. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48704.  相似文献   

10.
High oxygen permeability with optimal selectivity of the membrane is required for advancement in air separation membrane technology. Zeolite 4A-PDMS composite membranes were prepared by incorporation of Zeolite 4A nanoscale crystals during the polymerization process of PDMS membrane using toluene and n-heptane solvents, and their oxygen gas permeability and selectivity were explored. Small angle neutron scattering (SANS) technique was further used to study the polymer chain conformation and structure of membranes influenced by Zeolite 4A loading. The intersegmental distance between polymer chains and polymer chain aggregation or clustering were found to be increased on increasing the Zeolite 4A content in the membranes. Increment in the O2 permeability and O2/N2 selectivity were observed for both type of membranes (toluene and n-heptane) with 1 wt% Zeolite 4A loading. The best performance result with O2/N2 selectivity of 2.6, and O2 permeability of 1052 Barrer was exhibited by PDMS/toluene membrane loaded with 1 wt% Zeolite 4A. The PDMS/toluene membranes with 10 wt% Zeolite 4A loading exhibited increased O2 permeability of 1245 Barrer with a fair O2/N2selectivity of ~1.7, while the PDMS/n-heptane membrane with the same loading exhibited excellent O2 permeability of 6773 Barrer but lesser O2/N2 selectivity of ~1.2. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48047.  相似文献   

11.
In this study, polydimethylsiloxane (PDMS)‐coated polyethersulfone (PES) composite membrane was prepared for gas separation. “Film casting” and “dip‐coating” techniques were used for producing selective PDMS layer on the surface of the PES support. The effects of coating technique and conditions including coating solution concentration and curing temperature on permselectivity of CO2, CH4, and N2 were investigated. The prepared PES support did not provide any selectivity to the gases. When the concentration of PDMS coating solution was increased, initially permeability of CO2 was rapidly dropped and then gradually reached to an almost constant value. The optimum concentration of coating solution was 5 wt%. Curing temperature showed no pronounced effect on the CO2 permeability and selectivity. In “film casting” method, double coating showed superior permeability and selectivity. However, triple “dip‐coating” was promising. The selectivity of composite membrane prepared by “dip‐coating” was higher than “film casting” method. CO2/N2 and CO2/CH4 selectivity of five sequential dip‐coated composite membranes was 45.5 and 9.3, respectively. POLYM. ENG. SCI., 2013. © 2013 Society of Plastics Engineers  相似文献   

12.
Several sulfolanes such as 3-methylsulfolane, sulfolane, and 3-sulfolene were tested as modifiers in poly(trimethylsilyl methyl methacrylate) (PTMSMMA) and poly(trimethylsilyl propyne) (PMSP) to improve the selectivity of CO2. The gas permeabilities for the PTMSMMA-blend membranes containing high 3-methylsulfolane content were determined on a nonvacuum system in which the membranes started to be measured at their steady states at 30°C; those for all the other membranes were determined in a vacuum system in which those membranes were measured after they reached their unsteady states at 30°C. The PTMSMMA-blend membrane containing 40% 3-methylsulfolane was found to give the best separation of CO2 under the conditions in this study compared to all the PTMSMMA-blend membranes and the others prepared in our work; its ideal separation factors for CO2 over N2 were above 40 and its permeability coefficients of CO2 increased to above 250 Barrer. The modifications of PMSP membranes by impregnating with sulfolane and blending with sulfolene were found to be effective in improving the selectivity for CO2 over N2 for the PMSP membrane. The ideal separation factors for CO2 over N2 for the modified PMSP membranes impregnated with 30% sulfolane and blended with 25% 3-sulfolene were improved to above 10 and 13, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The development of carbon dioxide (CO2) separation technology is crucial for mitigating global climate change and promoting sustainable development. In this study, we successfully synthesized an array of cross-linked poly(vinyl alcohol) (PVA) membranes, xALD-PEG-ALD-c-PVA, with enhanced CO2/N2 separation performance by employing dialdehyde polyethylene glycol (ALD-PEG-ALD) as a cross-linker. The formation of the cross-linked network structure not only inhibits the crystallization of PVA but also disrupts hydrogen bonding and thus increases fractional free volume of PVA chains. Under the synergistic effect of these multiple factors, the cross-linked PVA membranes exhibit a significantly improved CO2 permeability. Moreover, they maintain high CO2/N2 selectivity, attributing to the CO2-philic characteristic of ethylene oxide groups in the cross-linked structure. At the ALD-PEG-ALD content of 1.6 mmol g−1, the xALD-PEG-ALD-c-PVA membrane demonstrates a CO2 permeability of 41.4 barrer and a CO2/N2 selectivity of 57.4 at 2 bar and 25°C. Furthermore, compared with the pristine PVA membrane, xALD-PEG-ALD-c-PVA membranes manifest superior mechanical properties and outstanding separation performance for a CO2/N2 (15/85, vol%) gas mixture. The excellent combination of permeability and selectivity makes xALD-PEG-ALD-c-PVA membranes highly promising for various CO2 separation applications.  相似文献   

14.
Membrane technology has emerged as a leading tool worldwide for effective CO2 separation because of its well-known advantages, including high surface area, compact design, ease of maintenance, environmentally friendly nature, and cost-effectiveness. Polymeric and inorganic membranes are generally utilized for the separation of gas mixtures. The mixed-matrix membrane (MMM) utilizes the advantages of both polymeric and inorganic membranes to surpass the trade-off limits. The high permeability and selectivity of MMMs by incorporating different types of fillers exhibit the best performance for CO2 separation from natural gas and other flue gases. The recent progress made in the field of MMMs having different types of fillers is emphasized. Specifically, CO2/CH4 and CO2/N2 separation from various types of MMMs are comprehensively reviewed that are closely relevant to natural gas purification and compositional flue gas treatment  相似文献   

15.
1:1[α/α‐Nα‐Bn‐hydrazino] pseudopeptide?polymer bioconjugates were synthesized and investigated as additives in a reference gas separation membrane (Pebax®) for CO2 capture. Pebax® is a polyether block amide thermoplastic elastomer provided by Arkema and is already well known for its good performance for CO2 separations. First, dimer and tetramer pseudopeptides were synthesized and their terminal amine was modified into a ‘clickable’ alkyne group in view of coupling. Second, an α‐azido acrylic poly(ethylene glycol)‐based oligomer was obtained by single‐electron transfer living radical polymerization and the two partners were coupled using copper(I) catalyzed alkyne‐azide cycloaddition (CuAAC) ‘click’ chemistry. The pseudopeptides and their bioconjugates were then assessed as original additives in Pebax® membranes for CO2/CH4 and CO2/N2 separations. The permeation data were analyzed according to the solution‐diffusion model. Compared to pseudopeptides, the pseudopeptide?polymer bioconjugates enabled the membrane properties to be greatly improved with better permeability (×1.5) and a good constant selectivity for CO2 capture. The best membrane properties were obtained with 3 eq. wt% of the tetramer‐based bioconjugate with a CO2 permeability of 194 Barrer (+46% compared to that of Pebax®) and constant selectivity (αCO2/N2 = 44 and αCO2/CH4 = 13). © 2016 Society of Chemical Industry  相似文献   

16.
This article presents fabrication, characterization, and performance evaluation of polyetherimide (PEI)/polyvinyl acetate (PVAc) blend membranes. Polymer blend membranes with various blend ratios of PEI/PVAc were prepared by solution casting and evaporation technique. Morphology and miscibility of polymer blend membranes were characterized by field emission scanning electron microscope (FESEM) and differential scanning calorimetry (DSC), respectively. The interaction between blend polymers was analyzed by FTIR analysis. Gas separation performance was evaluated in terms of permeability and selectivity. FESEM results revealed that pure polymer and blend membranes were homogeneous and dense in structure. A single glass transition temperature of polymer blend membranes was found in DSC analysis which indicated the miscibility of PEI/PVAc blend. FTIR analysis confirmed the presence of molecular interaction between blend polymers. The permeation results showed that the presence of PVAc (3 wt%) in blend membranes has improved CO2 permeability up to 95% compared to pure PEI membrane. In addition, CO2/CH4 selectivity was found to be 40% higher than pure PEI membrane. This study shows that blending a small fraction of PVAc can improve the gas separation performance of PEI/PVAc blend membranes. POLYM. ENG. SCI., 59:E293–E301, 2019. © 2018 Society of Plastics Engineers  相似文献   

17.
《分离科学与技术》2012,47(8):1261-1271
Membrane composed of PC as base of polymer matrix with different ratio of multiwall carbon nano tubes (MWCNTs) as nanofillers and poly ethylene glycol (PEG) as second polymer was prepared by solution casting method. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxyle-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas transport properties of membranes were examined in relation to pure He, N2, CH4, and CO2 gases. Results showed that the use of C-MWCNT instead of R-MWCNTs in mixed matrix membranes (MMMs) fabrication with base of PC provides better performance and also it increases (CO2/CH4) and (CO2/N2) selectivities to 27.38 and 25.42 from 25.45 and 19.24, respectively (at 5 wt% of MWCNTs). PEG as the second rubbery polymer was utilized to improve the separation performance and mechanical properties. In blend MMMs, highest (CO2/CH4) selectivity at 2 bar pressure increased to 35.64 for PC/PEG/C-MWCNT blend MMMs which was 27.28 for PC/MWCNTs MMMs at 10 wt%. Increase of feed pressure led to gas permeability and gas pair selectivity improvement in approximately all of membranes. Analysis of mechanical properties showed improvement in tensile modules with the increase of MWCNTs loading ratio and use of PEG in prepared MMMs.  相似文献   

18.
Mixed matrix membranes (MMMs) are gaining increasing interest in academic and industrial research due to their combined, desirable properties of both polymers and organic/inorganic filler as important materials. In this work, synthesized zeolitic imidazolate framework (ZIF-8) suspension (10–50 wt%) was directly incorporated into a [poly (amide-b-ethylene oxide) Pebax® 1657] matrix in order to improve the gas separation performance of the membrane. Dynamic light scattering (DLS) analysis showed an average diameter of 77.4 nm for the prepared nanoparticles. The transparent membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffractometry (XRD). These indicated excellent dispersion of nanoparticles, which was achieved by ultrasonication before casting the solution. Incorporation of ZIF-8 as filler in the polymer matrix led to improved thermal and mechanical stability of the membranes. This was confirmed by TGA and tensile analyses, indicating good contacts provided at the polymer/filler interfaces. The effect of ZIF-8 loading (up to 50 wt%) on membrane performance was investigated and it showed an optimum loading of 30 %. Single gas (CO2, N2 and CH4) permeation tests revealed rapid, enhanced permeability of the nanocomposite membranes without significant changes in selectivity (compared to those of the pristine polymeric membrane). The permeability increases for CO2, CH4 and N2 in the optimum Pebax® 1657/ZIF-8 (30 wt%) membrane were found in the stated order as 111, 88 and 99 %. The study revealed that Pebax® 1657/ZIF-8 membranes displayed better gas permeation properties compared to those of Pebax® 1657.  相似文献   

19.
The aim of this study is to determine the effect of preparation parameters on the membrane permeation mechanism and separation performances of dense homogeneous poly(bisphenol A carbonate) (PC) membranes. Blade‐casting and drop‐casting techniques are used for casting films from solutions with varying concentrations. Chloroform and methylene chloride are used to determine the effect of the properties of the casting solvent. Permeation measurements are done with Ar, N2, O2, CH4, CO2, and H2 gases. The selectivity values of dense homogeneous membranes with a PC composition of 7% (w/v chloroform) are 1.7 for Ar/N2, 1.1. for CH4/N2, 18 for CO2/N2, 26 for H2/N2, and 9.7 for O2/N2. These values with a PC composition of 15% (w/v methylene chloride) are 2.7, 1.3, 25, 44, and 13 for the same gases, respectively. In addition to the importance of the solvent type and composition, the casting type and thermal history also affects the performance of the membrane. Increasing the annealing period enhances the selectivity while decreasing the permeability for both casting solvents, yet this thermal history effect strongly depends on the solvent type because of solvent–polymer interactions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 776–785, 2003  相似文献   

20.
Different SAPO-34 zeolite loaded Matrimid® 5218 mixed matrix membranes (MMMs) were prepared by solution casting method and characterized using XRD and SEM analysis. Findings showed that semi crystalline neat polymer becomes more crystalline after thermal treatment at higher temperatures close to Matrimid® 5218 glass transition temperature. Furthermore, incorporation of crystalline filler particles of SAPO-34 zeolite resulted in more and more crystallinity of the MMMs. SEM images also exhibited acceptable contacts between the filler particles and the polymer chains. Permeation measurement showed that CO2 permeabilities and CO2/CH4 selectivities of the MMM with 20 wt% loading of SAPO-34 zeolite particles up to 6.9 (Barrer) and 67, respectively. This can be attributed to size discrimination of SAPO-34 pores that falls between CO2 and CH4 kinetic diameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号