首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turning brittle poly(lactic acid) (PLA) to ductile form via plasticizer inclusion is an effective option in the case of processing with high amounts of additives. Additionally, the integration of natural flame retardants to PLA involving bio-based plasticizer enables to use of environmentally friendly composites in conditions where fire resistance performance is required. In the current study, ductile green fire retardant PLA composites were manufactured using hydromagnesite&huntite (HH) as a natural fire retardant additive and acetyl tributyl citrate as a bio-based plasticizer. The influences of plasticizer and HH contents on the fire retardant, thermal and mechanical performances of the composites were explored. According to test results, the limiting oxygen index (LOI) value of PLA reduced from 29.2 to 28.0 and the UL-94 V rating changed from V2 to BC with the addition of 20 wt% plasticizer owing to the reduction in melt viscosity. The peak heat release rate (pHRR) and average heat release rate (avHRR) values increased steadily as the concentration of plasticizer increased due to the formation of a more porous residue structure stemming from the increased transportation rate of gases. In order to produce ductile flame retardant material, the plasticizer content was required to 20 wt% of HH. The highest LOI value (36.2) and UL-94 rating of V0 were achieved with the inclusion of 70 wt% HH in the presence of 20 wt% plasticizer. Improvement in impact resistance and reduction in tensile strength were observed as the added amount of plasticizer increased.  相似文献   

2.
将BaCl2分级的k型卡拉胶(KC)和纳米氢氧化铝〔Al(OH)3〕构成的协同阻燃体系添加到天然橡胶(NR)中制备KC-Al(OH)3/NR复合材料。通过TG、极限氧指数(LOI)、锥形量热(CCT)以及SEM考察了不同质量比的KC和Al(OH)3对复合材料力学性能和阻燃性能的影响。结果表明,当KC与Al(OH)3以1∶1的质量比加入到NR时,KC-Al(OH)3/NR复合材料的热稳定性、阻燃性能最优,复合材料的LOI达到25%。与纯天然橡胶相比,复合材料总热释放量(THR)、热释放速率峰值(pHRR)、总烟释放量(TSP)和平均质量损失率(AMLR)分别降低了12%、65%、23%和62%。相比于单独添加Al(OH)3体系,复合材料拉伸强度和断裂伸长率分别增加了11%和17%。  相似文献   

3.
Microencapsulated ammonium polyphosphate (VAPP) with poly(vinyl alcohol)- melamine-formaldehyde (VMF) shell was introduced in ethylene vinyl acetate copolymer (EVA) to improve its flame retardancy. Due to the presence of VMF shell, VAPP shows better compatibility, flame retardancy and water resistance compared with ammonium polyphosphate (APP) in EVA. The flammability of EVA and its flame-retarded composites was studied by LOI, UL-94 and cone calorimeter. The composite containing 40 wt% VAPP can pass V-0 in UL-94 test, and hot water treatment shows few effects on its LOI value and UL-94 rating. The cone results indicated that the use of VAPP in EVA can significantly decrease heat release rate and total heat release compared with APP. To understand the mechanism of action of VAPP, dynamic FTIR experiments were carried out on EVA and EVA/VAPP composites. Based on above studies, the flame retardant mechanism of VAPP in EVA composite is discussed.  相似文献   

4.
A phosphorus-nitrogen flame retardant (PN) was synthesized by using cytosine and diphenylphosphinic chloride. The flame retardancy and thermal stability of polylactic acid (PLA)/PN composites were investigated by the UL-94 vertical burning test, limited oxygen index (LOI), cone calorimeter test, and thermogravimetric analysis. The PN performs efficiently on improving the flame retardancy of PLA. The PLA composite achieves the UL-94 V-0 rating and its LOI increases to 30.4 vol% by adding 0.5 wt% PN. The flame retardant mechanism analysis showed that PN catalyzes the degradation of PLA to improve the flame retardancy by melting-away mode. Meanwhile PN reduces the release of flammable gasses during thermal degradation of PLA by promoting the transesterification of PLA, which is helpful for extinguishing flame. Moreover, triglycidyl isocyanurate (TGIC) was used as a micro-crosslinking agent to reduce the loss of mechanical properties of PLA/PN composites caused by degradation. Adding 0.1 wt% TGIC and 1.0 wt% PN into PLA, the tensile strength and elongation at break of PLA/PN are increased to the same level as that of PLA. Therefore, PLA with excellent comprehensive performance can be obtained.  相似文献   

5.
ABSTRACT

Despite extraordinary mechanical properties and excellent biodegradability, poly (lactic acid) (PLA) still suffers from a highly inherent flammability, restricting its applications in the electric and automobile fields. Although a wide range of flame retardants have been developed to reduce the flammability, they normally compromise the mechanical strength of PLA. In this study, a series of composites based on PLA, have been prepared by melt-blending with intumescent flame retardants (IFRs). The morphology, thermal stability and burning behaviour of the composites were investigated using a scanning electron microscope–energy dispersive spectrometer (SEM–EDS), thermogravimetric analysis (TGA), the limiting oxygen index (LOI), vertical burning (UL-94) and the cone calorimeter test (CCT). The LOI value reached 38.5% and UL-94 could pass V-0 for the PLA/IFR composite containing only 12 wt-% IFR. The dispersion of IFR in PLA was observed using SEM–EDS. A significant improvement in fire retardant performance was observed for the PLA/IFR composite from the CCT (reducing the heat release rate and the total heat release). More importantly, compared to pure PLA, the addition of IFR did not seriously deteriorate the mechanical properties of the material.  相似文献   

6.
Abstract

The synergistic effects of Fe organic modified montmorillonite (Fe-OMMT) with layered double hydroxides (LDHs) in ethylene vinyl acetate copolymer/LDH (EVA/LDH) composites have been studied using thermal analysis [thermogravimetric analysis (TGA)], limiting oxygen index (LOI), UL-94 test and cone calorimeter test (CCT). The results showed that the addition of a given amount of Fe-OMMT apparently increased the LOI value and the rating in the UL-94 test. The results from the LOI and UL-94 tests show that Fe-OMMT can act as flame retardant synergistic agents in EVA/LDH composites. The CCT data indicated that the addition of Fe-OMMT in the EVA/LDH system can greatly reduce the heat release rate. The TGA data show that Fe-OMMT, as an excellent flame retardant synergist of LDH, cannot increase the thermal degradation temperature and the charred residues.  相似文献   

7.
Poly(lactic acid) (PLA) has evolved into a commodity polymer with numerous applications. However, its high flammability limits its viability as a perfect alternative to petrochemical engineering plastics. In this study, PLA was modified using polyhexamethyleneguanidine phosphate (PHMG-P) and ammonium polyphosphate (APP). The flame retardant performance of PLA/PHMG-P/APP was investigated based on the limiting oxygen index (LOI), vertical burning test (UL-94), thermogravimetric analysis (TGA), cone calorimetry (CC), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Raman Spectrometry. Qualitative and quantitative methods were used to determine the antibacterial properties of PLA composites. The LOI of PLA-10% (P:A = 1:4) was 31.7% and was rated V-0 in the UL-94 V-0 test. The antibacterial properties of the composites reflected the antibacterial effects of PLA-10% (P: A = 1:4) against Escherichia coli and Staphylococcus aureus, with the antibacterial rates reaching 93.41% and 93.26%, respectively. PHMG-P and APP had a synergistic flame-retardant effect and improved the flame retardancy of PLA while exhibiting excellent antibacterial properties.  相似文献   

8.
The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant (IFR) poly (lactic acid) (PLA) composites was investigated among a series of PLA/IFR/MXene, which were prepared by melt blending 0-2.0 wt% MXene, 10.0 wt%-12.0 wt% IFR and PLA together. The results of limiting oxygen index (LOI) and vertical burning (UL-94) discover that the combination of 0.5 wt% MXene and 11.5 wt% IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%. The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate (HRR) in cone calorimeter tests (CCTs). Furthermore, the carbon residues after CCTs were characterized by scanning electron microscope (SEM), laser Raman spectroscopy (LRS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/ MXene composite materials' ability to produce a dense barrier layer to resist burnout during thermal degradation.  相似文献   

9.
Dipentaerythritol (DPER), 4, 40-diphenylmethanediisocyanate (MDI) and melamine (MEL) are used as raw materials to microencapsulate ammonium polyphosphate (MAPP) in situ polymerization. The MAPP is characterized by Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA). The results show that the coating operation can effectively improve water resistance of ammonium polyphosphate (APP), and MAPP has higher residual rate than that of APP after combustion. The flame retardant action of MAPP and APP in polypropylene (PP) is investigated by the limited oxygen index (LOI), vertical burning test (UL-94), TGA, SEM, and cone calorimeter test (CCT). The LOI value of the PP/MAPP composite at the same loading is higher than that of PP/APP composite. UL 94 ratings of PP/MAPP composites are raised to V-0 at 20 wt% loading. The results of CCT also show that MAPP is more efficient than APP. The morphological structures observed by digital photos and SEM demonstrated that MAPP could be promoted to form the continuous and compact intumescent char layer. The flame retardant mechanism of PP/MAPP is also discussed.  相似文献   

10.
Vinyl polysiloxane microencapsulated ammonium polyphosphate (MAPP) was prepared by a sol-gel method using vinyltrimethoxysilane as a precursor to improve its thermal stability and hydrophobicity. The MAPP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and thermogravimetric analyzer (TGA). The results showed that ammonium polyphosphate (APP) was successfully coated with vinyl polysiloxane. MAPP and pentaerythritol (PER) were used together to improve the flame retardancy of polypropylene (PP). The flame retardant properties of PP composites were investigated by limiting oxygen index (LOI), UL-94 test, TGA and SEM. When the MAPP was added as a flame retardant, with PER as a char forming agent, the LOI of PP/MAPP/PER composites was 33.1%, and it reached the UL-94 V-0 level. The results also demonstrated that the flame retardant properties of PP/MAPP/PER composites were better than those of PP/APP/PER composites at the same loading. Moreover, the addition of flame retardant and carbon forming agent could promote the crystallization behavior of PP.  相似文献   

11.
彭建文  彭中朝  宋强  李端生  黄若森  唐刚 《塑料》2020,49(2):32-35,39
采用简单方法合成苯基次膦酸铈(CeP),并将其作为阻燃剂加入聚乳酸(PLA)中,通过熔融共混技术制备聚乳酸/苯基次膦酸铈(PLA/CeP)复合材料。通过热重(TG)、极限氧指数(LOI)、UL-94垂直燃烧(UL-94)、微型量热(MCC)研究复合材料的热稳定性、阻燃性能和燃烧性能。通过阻燃测试发现,CeP能够提高复合材料阻燃性能,PLA/CeP20极限氧指数能达到24.3%并通过UL-94 V-2级别。热重分析的结果表明,CeP显著提高了PLA/CeP复合材料初始分解温度和成炭率。MCC测试结果表明,CeP能明显降低PLA/CeP复合材料火灾危险性。PLA/CeP20热释放速率峰值(PHRR)和总热释放(THR)分别为397 W/g和13.6 kJ/g,与纯聚乳酸相比,分别下降了13.9%和28.0%。因此,苯基次磷酸铈对聚乳酸具有良好的阻燃效果。  相似文献   

12.
Bamboo fibers (BF) were used as charring agent in thermoplastic polyurethane (TPU), together with ammonium polyphosphate (APP) to prepare intumescent flame retardant composites. In order to improve the dispersibility and flame retardant efficiency, BF was grafted with diammonium phosphate (DAP), named as modified bamboo fibers (M-BF). By the presence of 8 wt% APP and 2 wt% M-BF, the sample could achieve the maximal limiting oxygen index (LOI) value of 30.5% and V-0 rating in UL-94 test. The peak heat release rate for TPU/8APP/2 M-BF is 190 kW/m2, which is 86.0% lower than that of neat TPU. Besides, TPU/8APP/2 M-BF sample presented a tensile strength of 23.0 MPa, which was slightly lower than neat TPU sample. The thermogravimetric analysis for TPU composites and the morphology observation of the char demonstrated that APP and M-BF took effects on condensed phase through promoting the formation of intumescent char structure and free radical trapping. Meanwhile, it could release inert gases in gas phase. Therefore, M-BF exhibited great potential in applying as renewable charring agent for alleviating the depletion of petroleum resources.  相似文献   

13.
宋剑峰  李曼  梁小良  粟海锋 《化工进展》2018,37(11):4412-4418
以聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)复配的膨胀型阻燃体系(IFR)为主要阻燃剂,表面改性后的赤泥(Ti-MRM)作为协效剂阻燃聚乙烯(PE),采用熔融共混法制备PE基阻燃复合材料(PE/IFR-Ti-MRM)。通过热重分析仪(TGA)、垂直燃烧仪(UL-94)、极限氧指数测定仪(LOI)及扫描电镜(SEM)等对其热氧稳定性、燃烧等级、阻燃性能和残炭形貌进行了表征与分析。结果表明:加入改性赤泥的PE/IFR-Ti-MRM复合材料形成的炭层更加致密和连续,当最优配比时,复合材料的极限氧指数达到32.2,燃烧等级达到V-0级;而PE/IFR阻燃复合材料的极限氧指数只能达到27.5,燃烧等级为V-2级。  相似文献   

14.
The purpose of this study is to increase of the flammability properties of the glass fiber (GF)–reinforced poly (lactic acid)/polycarbonate (PLA/PC) composites. Ammonium polyphosphate (APP) and triphenyl phosphate (TPP) were used as flame retardants that are including the organic phosphor to increase flame retardancy of GF‐reinforced composites. APP, TPP, and APP‐TPP mixture flame retardant including composites were prepared by using extrusion and injection molding methods. The properties of the composites were determined by the tensile test, limiting oxygen index (LOI), differential scanning calorimetry (DSC), and heat release rate (HRR) test. The minimum Tg value was observed for the TPP including PLA/PC composites in DSC analysis. The highest tensile strength was observed in GF‐reinforced PLA/PC composites. In the LOI test, GF including composite was burned with the lowest concentration of oxygen, and burning time was the longest of this composite. However, the shortest burning time was obtained by using the mixture flame retardant system. The flame retardancy properties of GF‐reinforced PLA/PC composite was improved by using mixture flame retardant. When analyzed the results of HRR, time to ignition (TTI), and mass loss rate together, the best value was obtained for the composite including APP.  相似文献   

15.
Microencapsulated ammonium polyphosphate (GMFAPP) is prepared by in situ polymerization method with a shell of poly(ethylene glycol) modified melamine-formaldehyde resin. Due to the presence of shell, GMFAPP shows less size, higher water resistance and flame retardancy in polypropylene (PP) compared with ammonium polyphosphate (APP). The flame retardant action of GMFAPP and APP in PP are studied using LOI, UL-94 and cone calorimeter, and their thermal stability is evaluated by thermogravimetric apparatus. The limiting oxygen index (LOI) value of the PP/GMFAPP at the same loading is higher than the value of PP/APP. UL-94 ratings of PP/GMFAPP can reach V-0 at 30 wt% loading. The water resistant properties of the PP composites are studied, and the results of the composites containing with APP and GMFAPP are compared. The cone results put forward that GMFAPP is an effective flame retardant in PP compared with APP. Moreover, the thermal oxidative behavior of GMFAPP is evaluated by dynamic FTIR to study its flame retardant mechanism in PP.  相似文献   

16.
In this study, phospholipidated β‐cyclodextrin (PCD) was obtained by the condensation between β‐cyclodextrin and phenyl phosphonic acid dichloride, which was characterized by Fourier transform infrared (FTIR) spectra, 1H‐NMR, and thermogravimetric analysis (TGA). The thermal stability and flame retardancy of the poly(lactic acid) (PLA) blends [PLA–ammonium polyphosphate (APP)–PCD] were measured by TGA coupled to FTIR spectroscopy, vertical burning test (UL‐94), limiting oxygen index (LOI), and cone calorimetry tests. The results show that the mass ratio and loading amount of APP and PCD affected the properties of PLA. When the loading of APP and PCD was 30 wt % and the mass ratio of APP to PCD was 5:1, the highest LOI value of 42.6% (that of neat PLA was 19.7%) and a UL‐94 V0 rating were achieved, and the reduction of the total heat release was greater than 80%. Even when the total amount of APP and PCD was decreased to 20 wt % with the same mass ratio, the flame‐retardant PLA still can achieved a UL‐94 V0 rating. The improved performance was explained by the formation of an intumescent, continuous, contact char layer. Moreover, the reaction between APP and PCD contributed to the improvement of the thermal stability of the char residue. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46054.  相似文献   

17.
A novel bio-based P-N containing intumescent flame retardant melamine starch phytate (PSTM) was prepared via the reaction of phytic acid starch ester with melamine and characterized by Fourier transform infrared, scanning electron microscopy and thermogravimetric analysis (TGA). The effects of PSTM on thermal properties and flammability of rigid polyurethane (PU) foams were analyzed by TGA, limit oxygen index (LOI), vertical burning tests (UL-94) and cone calorimeter measurement. The TGA results demonstrated that the thermal stabilities of PU/PSTM foam at high temperature was enhanced with the increasing additive amount of PSTM. The results showed that PU foam with 30 php PSTM (PU/PSTM-30%) observed an LOI value of 25.9 and a UL-94 rating of V-0. Cone calorimetry data showed that peak heat release rate, total heat release and smoke production rate of PU/PSTM-30% were distinctly lower than that of pure PU. Further experimental results demonstrated that PSTM promotes well charring of PU which could protect the foam from combustion. This work developed a novel bio-based intumescent flame retardant by suing phytic acid and starch as the acid source and carbon source, respectively, which is of great significance to the preparation of environmental-friendly flame retardants.  相似文献   

18.
In this study, 4,4′-Diaminodiphenyl methane (DDM) was exploited as hardener for diglycidyl ether of daidzein (DGED) and epoxy resin mixture (E-D). The composites were produced by blending with different contents of ammonium polyphosphate (APP) and expandable graphite (EG) into E-D resin, named E-D/A-E composites. Firstly, E-D/A-E blends were analyzed by Fourier transform infrared spectroscopy and DSC to evaluate their curing behavior. The TGA was performed on the E-D/A-E composites to analyze their thermal stability, and the thermal properties of the composites were enhanced by adding APP-EG (A-E) flame retardants. The mechanical properties and the fractured surfaces of the E-D/A-E composites were studied by tensile, impact tests and scanning electron microscopy. Finally, through torch burning test, limiting oxygen index (LOI), vertical burning (UL-94) and micro-calorimetry tests, the influence of A-E flame retardants contents on flammability of composites were evaluated. The results showed that the UL-94 V-0 rating was obtained for the E-D/A-E composites and the composites exhibited a self-extinguishing phenomenon. When A-E flame retardants content reached 9.1 wt%, the LOI value reached 34.5%, and total heat release (Total HR) was reduced by 20.2% compared with E-D/A-E 1.  相似文献   

19.
以六水合氯化钇(YCl3?6H2O)和次磷酸钠(NaH2PO2)为原料,采用共沉淀法制备了一种新型稀土金属次磷酸盐-次磷酸钇(YHP),对其进行了表征;以YHP为阻燃剂,采用熔融共混法制备了系列玻纤增强聚酰胺6(GFPA)/次磷酸钇复合材料(GFPA/YHP),采用热重、极限氧指数(LOI)、UL-94垂直燃烧和微型量热测试研究了YHP添加量对复合材料热稳定性、阻燃性能及燃烧性能的影响. 结果表明,YHP已成功制备,其具有棒状结构,长度为20?100 ?m,宽度为5?20 ?m,热稳定性很高,降解温度T5%为410℃,最大热失重速率温度Tmax为412℃,750℃下热解的残炭率为90.8wt%. 加入YHP降低了GFPA/YHP复合材料的热分解温度,但提高了其成炭率和高温稳定性,YHP添加量为20wt%时,复合材料的热分解温度为373℃,最大热失重速率温度为414℃,700℃下热解的残炭率为50.42wt%;YHP可有效提高复合材料的阻燃性能,极限氧指数(LOI)达27.5vol%,垂直燃烧级别达UL-94 V-1级;YHP可有效降低复合材料燃烧过程的热释放速率峰值(PHRR)和总放热(THR)量,二者分别降至327 W/g和15.8 kJ/g,比GFPA分别下降了14.1%和25.4%,表明YHP有效降低了GFPA/YHP复合材料燃烧的火灾危险性.  相似文献   

20.
王波  毛双丹  林福华  张咪  李向阳 《精细化工》2023,40(7):1562-1569+1604
用费托蜡(FTW)对凹凸棒土(ATP)进行表面改性制备了阻燃剂F-ATP,并对其形貌、结构及其热稳定性进行了表征。将阻燃剂F-ATP加入到聚己二酸/对苯二甲酸丁二醇酯(PBAT)基体中制备了PBAT/F-ATP复合材料。采用极限氧指数测定仪(LOI)、垂直燃烧测试(UL-94)、锥形量热仪(CCT)、TG-IR、拉曼光谱仪和SEM对复合材料的阻燃性能进行了分析。结果表明,改性后的ATP团聚现象消失且热稳定性明显提高。阻燃剂F-ATP质量分数为10%的PBAT/F-ATP复合材料(PBAT-3)阻燃效果最佳,其LOI值达到23.5%,UL-94等级达到V-1级,熔滴现象得到明显改善。与ATP质量分数为10%的PBAT/ATP复合材料相比,PBAT-3复合材料的峰值热释放速率值(PHRR)、总热释放量(THR)分别降低了4.99%和26.11%。PBAT-3复合材料气态产物的释放量在整个燃烧过程中均降低,起到了很好的气相阻燃效果,这主要归因于阻燃剂F-ATP的加入使PBAT/F-ATP复合材料形成致密且连续性好的炭层结构,有效地隔绝了复合材料内部与外界的热量/质量传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号