首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(3):4221-4227
Spark plasma sintering (SPS) is a powerful technique to produce fine grain dense ferrite at low temperature. This work was undertaken to study the effect of sintering temperature on the densification, microstructures and magnetic properties of magnesium ferrite (MgFe2O4). MgFe2O4 nanoparticles were synthesized via sol–gel self-combustion method. The powders were pressed into pellets which were sintered by spark plasma sintering at 700–900 °C for 5 min under 40 MPa. A densification of 95% of the theoretical density of Mg ferrite was achieved in the spark plasma sintered (SPSed) ceramics. The density, grain size and saturation magnetization of SPSed ceramics were found to increase with an increase in sintering temperature. Infrared (IR) spectra exhibit two important vibration bands of tetrahedral and octahedral metal-oxygen sites. The investigations of microstructures and magnetic properties reveal that the unique sintering mechanism in the SPS process is responsible for the enhancement of magnetic properties of SPSed compacts.  相似文献   

2.
This work focuses on the development of an original process based on a 2.45 GHz single-mode microwave cavity equipped with a uniaxial press, to sinter transparent spinel MgAl2O4 ceramic in air. The samples were conventionally pre-sintered to a density of 90% TD before microwave sintering to the final stage of densification. The influence of thermomechanical cycle on the material properties was investigated. Transmittance, grain size distribution, hardness and fracture toughness of the samples were measured and correlated to the microstructure. This new sintering process has allowed obtaining transparent samples with sub micrometric grain size and high mechanical properties, with relatively short times and low temperature. These first results can be compared to some obtained by SPS or HIP. The technical input of this method is that all the process is here conducted in air atmosphere.  相似文献   

3.
This work investigates the feasibility to the fabrication of high density of nano-grained titanium dioxide ceramics by two-step sintering process under spark plasma conditions. First step is carried out by fast-heating-rate sintering in order to obtain an initial high density and a second step is held at a lower temperature by isothermal sintering aiming to increase the density without obvious grain growth. Experiments are conducted to determine the appropriate temperatures for each step. The temperature range between 840 and 850 °C is effective for the first step sintering (T1) due to its highest densification rate. The isothermal sintering is then carried out at 810–830 °C (T2) for various hours in order to avoid the abnormal grain growth and improve the density at the same time. TiO2 bulk ceramics with nano-sized grain were fabricated successfully by combination of spark plasma sintering (SPS) with the two step sintering method (TSS). Titanium dioxide nano-ceramics with >95% theoretical density could be obtained with T1 and T2 taken as 850 °C and 830 °C, respectively. The relative grain growth quotient D/Do for the used starting powder was almost ~1. Further XRD investigations indicated no obvious anatase–rutile transition was found in the prepared nano-crystalline ceramics.  相似文献   

4.
Three different spark plasma sintering (SPS) treatments were applied to highly sinteractive, near-stoichiometric UO2.04 nanocrystalline (5 nm) powders produced by U(IV) oxalate hydrothermal decomposition at 170 °C. The sintering conditions for reaching 95 % theoretical density (TD) in regular SPS, high pressure SPS (HP-SPS), and, for the first time, two-step SPS (2S-SPS), were determined. Densification to 95 % TD was achieved at 1000 °C in regular SPS (70 MPa applied pressure), 660 °C in HP-SPS (500 MPa), and 650?550 °C in 2S-SPS (70 MPa). With the goal of minimising the grain growth during densification, the sintering treatments were optimised to favour densification over coarsening, and the final microstructures thus obtained are compared. Equally dense UO2 samples of different grain sizes, ranging from 3.08 μm to 163 nm, were produced. Room-temperature oxidation of the powders could not be avoided due to their nanometric dimensions, and a final annealing treatment was designed to reduce hyperstoichiometric samples to UO2.00.  相似文献   

5.
The high sintering temperature required for aluminum nitride (AlN) at typically 1800 °C, is an impediment to its development as an engineering material. Spark plasma sintering (SPS) of AlN is carried out with samarium oxide (Sm2O3) as sintering additive at a sintering temperature as low as 1500–1600 °C. The effect of sintering temperature and SPS cycle on the microstructure and performance of AlN is studied. There appears to be a direct correlation between SPS temperature and number of repeated SPS sintering cycle per sample with the density of the final sintered sample. The addition of Sm2O3 as a sintering aid (1 and 3 wt.%) improves the properties and density of AlN noticeably. Thermal conductivity of AlN samples improves with increase in number of SPS cycle (maximum of 2) and sintering temperature (up to 1600 °C). Thermal conductivity is found to be greatly improved with the presence of Sm2O3 as sintering additive, with a thermal conductivity value about 118 W m−1 K−1) for the 3 wt.% Sm2O3-doped AlN sample SPS at 1500 °C for 3 min. Dielectric constant of the sintered AlN samples is dependent on the relative density of the samples. The number of repeated SPS cycle and sintering aid do not, however, cause significant elevation of the dielectric constant of the final sintered samples. Microstructures of the AlN samples show that, densification of AlN sample is effectively enhanced through increase in the operating SPS temperature and the employment of multiple SPS cycles. Addition of Sm2O3 greatly improves the densification of AlN sample while maintaining a fine grain structure. The Sm2O3 dopant modifies the microstructures to decidedly faceted AlN grains, resulting in the flattening of AlN–AlN grain contacts.  相似文献   

6.
《Ceramics International》2020,46(9):13240-13243
Zirconia ceramics were prepared by oscillatory pressure sintering (OPS) and hot pressing (HP). The result revealed that OPS could enhance densification compared to HP when sintering temperature was higher than a critical value. The onset temperature for rapid grain growth was found to be same for both techniques. However, rate of grain growth in OPS was lower than that in HP. Furthermore, the result also showed that samples prepared by OPS exhibited higher hardness than those prepared by HP when sintering temperature was higher than the critical value. The improved hardness was solely due to the higher density of the samples prepared by OPS.  相似文献   

7.
The high sintering temperature of pure B4C considerably limits its widespread application, thus searching an effective sintering aid is critical. In this work, B4C-based ceramic with 1 vol.% nonequiatomic Fe50Mn30Co10Cr10 medium entropy alloy as a sintering aid were fabricated at 1900-2000°C by spark plasma sintering (SPS) under applied pressure, and their mechanical properties were examined and compared with pure B4C ceramic sintered at same condition. The maximal flexural strength of 255.59 MPa, microhardness of 2297.6 Hv0.2 and fracture toughness of 3.62 MPa m1/2 could be obtained at optimized SPS pressure of 50 MPa, which were all higher than those of pure B4C ceramic. To better understand the densification kinetics mechanisms, the densification ratio as a function of SPS temperature and pressure was theoretically analyzed using steady creep model. It was found that densification controlled by grain-boundary sliding at lower pressure transferred to power law creep regime at higher pressure, which were proved by the dislocation net shown in transmission electron microscopy image.  相似文献   

8.
《Ceramics International》2017,43(11):8075-8080
The ceramic materials exhibit many intriguing properties relating to higher melting temperature and good thermomechanical properties. In present work, a newly developed Fields Activated Sintering Technology (FAST), named as Micro-forming Fields Activated Sintering Technology (Micro-FAST), has been applied to successfully sinter the TiO2 samples. The influence of sintering temperature and heating schedule has been investigated. Based on the analysis of the relative density, grain size and microstructure evolution of TiO2 samples, the densification process could be divided into three stages: I) Preheating period: densification by particle rearrangement mainly driven by the external pressure; II) Rapid heating period: rapid densification by fast atomic diffusion under the coupling effects of stress and temperature; III) Final heating period: the densification further proceeds by slower atomic diffusion. High density (up to 96.95%), fine grain sizes and direct grain-to-grain contact could be obtained by Micro-FAST to sinter TiO2 bodies without use of any sintering aid. These results should encourage systematic exploration of Micro-FAST in engineering applications.  相似文献   

9.
Despite the growing interest in the spark plasma sintering (SPS) of uranium dioxide, its sintering mechanisms have yet to be studied in great detail. Herein we propose a direct method to calculate the apparent activation energy for densification, Qact, and the stress exponent, n, for SPS of nearly stoichiometric UO2. A set of experiments performed at different heating rates (CHR) and different pressures levels allowed us to calculate Qact and n, respectively, though we were limited to a theoretical density between 50% to 75 %. The master sintering curve was employed as a complementary method to compare Qact. The average values were Qact =96 kJ/mol (CHR), Qact = 100 kJ/mol (MSC) and n = 1.4. We have therefore proposed grain boundary diffusion coupled with grain boundary sliding as the densification mechanism. The activation energy in SPS tends to be lower compared with that in other processes like conventional sintering (250?450 kJ/mol), creep (350?550 kJ/mol) and hot pressing (222 kJ/mol and 480 kJ/mol).This decrease could be due to the effect of the electric field combined with the higher heating rates, typical of SPS.  相似文献   

10.
The effects produced by annealing Y2O3 nanopowders on their spark plasma sintering (SPS) behavior are systematically investigated in this work. It is found that the annealed powders display higher sinterability with respect to the as‐received ones. Indeed, the maximum densification level reached from pristine powders is about 97.5%, whereas density decreases when further increasing either the sintering temperature or the dwell time. In contrast, the density of SPS products obtained from pretreated powder monotonically increases with temperature and processing time, thus leading to fully dense materials in 30 min at 1050°C and 60 MPa. Correspondingly, it is found that the annealing treatment markedly inhibits grain coarsening during SPS. Thus, dense translucent samples with grain size below 100 nm can be attained from annealed powders. On the other hand, white‐opaque specimens with significantly coarser microstructures (up to 1‐μm‐sized grains) are obtained when pristine powders are directly processed under the same sintering conditions. Furthermore, it is observed that the annealing treatment of SPS samples in air allows for graphite contamination removal, whereas no improvement in term of light transmittance is produced.  相似文献   

11.
This work shows for the first time the possibility to sinter BCZT powder compacts by rapid heating rates within one hour of sintering, while achieving good piezoelectric properties. The sintering was performed by rapid (heating rates 100 and 200 °C/min) pressure-less sintering (PLS) at 1550 °C/5-60 min and by SPS sintering (100 °C/min, 1450 °C/5?60 min and 1500 °C/15?45 min). The rapid PLS samples reached a relative density up to 94 % and grain sizes of 17–36 μm acquiring d33 up to 414 pC/N. Although the SPS samples reached full density at 1450 °C, their piezoelectric properties worsened due to smaller grains (10?15 μm) as well as formation of cracks at dwell times > 30 min. At elevated SPS temperature of 1500 °C/30 min, the d33 increased to 360 pC/N sustaining full density. Even higher increase in d33 (424 pC/N) of SPS samples was achieved by post-rapid PLS at 1550 °C/60 min resulting from further expansion in grain size.  相似文献   

12.
Zirconia toughened alumina can be made electrically conductive and thus electric discharge machinable by addition of a percolating dispersion of niobium carbide. In order to boost the productivity of the sintering process spark plasma sintering was tested at identical temperature and pressure but shorter dwell than in hot pressing. SPS sintering parameters for ZTA-NbC are developed and spark plasma sintered ceramics are compared to the hot pressed benchmark.During SPS a percolating NbC backbone of niobium carbide grains is formed which enhances electrical conductivity but impedes densification. Identical strength at however higher sintering temperature is achieved by SPS but the fracture resistance and hardness were always superior in hot pressed samples. The monoclinic content of zirconia grains in as fired SPS samples is higher despite smaller average grain size and the transformation toughening effect is less pronounced. SPS promises economic benefits due to shorter dwell and cooling cycles.  相似文献   

13.
BaTiO3 nanopowders prepared by two different wet chemical routes, one based on microemulsion-mediated synthesis (M-BT) and the other one on the alkoxide-hydroxide method (A-BT) were consolidated by spark plasma sintering (SPS). The densification process, the linear shrinkage rates and the relative densities achieved were strongly dependant on the synthetic route. The results show that fully densified BaTiO3 ceramics with a grain size of about 200 nm can be obtained in both cases by controlling the sintering temperature during the SPS process. The study of dielectric properties revealed that M-BT derived ceramics show higher permittivity values compared to those obtained for A-BT. The influence of the barium/titanium ratio on the sintering behavior and the dielectric properties is discussed.  相似文献   

14.
《Ceramics International》2020,46(3):2585-2591
SiO2-MgO ceramics containing different weight fractions (0, 0.5, 1, 2, and 4 wt%) of SiO2 powder were prepared by mixing nano MgO powder, and the powder mixtures were densified by spark plasma sintering (SPS). The effect of SiO2 addition and SPS method on the sintering behavior, microstructure and mechanical properties were investigated. Results were compared to specimens obtained by conventional hot pressing (HP) under a similar sintering schedule. The highest relative density, flexural strength and hardness of 2 wt% SiO2-MgO ceramics reached 99.98%, 253.99 ± 7.47 MPa and 7.56 ± 0.21 GPa when sintered at 1400 °C by SPS, respectively. The observed improvement in the sintering behavior and mechanical properties are mainly attributed to grain boundary "strengthening" and intragranular "weakening" of the MgO matrix. Furthermore, the spark plasma sintering temperature could be decreased by more than 100 °C as compared with the HP method, SPS favouring enhanced grain boundary sliding, plastic deformation and diffusion in the sintering process.  相似文献   

15.
《Ceramics International》2016,42(6):6707-6712
In this paper, the sintering behavior of β-Si6−zAlzOzN8−z (z=1) powder prepared by combustion synthesis (CS) was studied using spark plasma sintering (SPS). The CSed powder was ball milled for various durations from 0.5 to 20 h and was then sintered at different temperatures with heating rates varying from 30 °C/min to 200 °C/min. The effects of ball milling, sintering temperature, and heating rate on sinterability, final microstructure, and mechanical property were investigated. A long period of ball milling reduced the particle size and subsequently accelerated the sintering process. However, the fine powder was easily agglomerated to form secondary particles, which accordingly decreased the densification of the SPS product. The high sintering temperature accelerated the densification process, whereas the high heating rate reduced the grain growth and increased the relative density of the sintered product.  相似文献   

16.
Cermets are ceramic metal composites. The metallic phase in the cermet typically undergoes oxidation during sintering in air. Electric field-assisted sintering processes such as field-assisted sintering technology/spark plasma sintering (FAST/SPS) and flash involves very high heating rates, short processing time and low processing temperature. The main aim of this work was to see if field-assisted sintering techniques can prevent the oxidation of the metallic phase in the cermet. Sintering behavior of 8YSZ-5 wt.% Ni cermet was studied by three different techniques namely; conventional sintering, FAST/SPS and flash sintering. Phases and microstructure were analyzed through X-ray diffraction and scanning electron microscopy, respectively. Temperature and time required for sintering the samples via FAST/SPS and flash sintering was significantly lower than that during conventional sintering. In addition, we found limited grain growth during FAST/SPS and flash sintering. During conventional sintering in reducing atmosphere (Ar and vacuum), Ni particles retained their elemental state, however the extent of densification was poor in the cermet. FAST/SPS in argon and vacuum resulted in almost complete densification (relative density > 97%) and Ni particles were retained in their elemental state in the cermet. During flash sintering in air, the samples sintered to a high densification (relative density ∼98%), however, Ni particles were completely oxidized.  相似文献   

17.
《应用陶瓷进展》2013,112(1):52-56
Abstract

One of the ultimate objectives for sintering research is to predict densification results under different thermal profiles for a given processing method. This paper studies the construction and validation of the master sintering curve (MSC) for rutile TiO2 for pressureless sintering. The MSC was constructed using dilatometry data at two heating rates and was then validated using isothermal holds at three different temperatures. The scanning electron microscopy (SEM) observation shows that the partially sintered samples have the same density under different heating procedures, which demonstrates that the assumptions of the model are reliable. The concept of the MSC could be used to predict the sintering shrinkage and final density and calculate the activation energy. A value of 105 kJ mol-1 for TiO2 was obtained. The MSC could be applied to predict the sintering profile to prepare ceramics with required density and a minimum of grain growth.  相似文献   

18.
Homogeneous microstructure control in the SPS (spark plasma sintering) sintered big size Al2O3 ceramic was realized by the synergy effect of grain boundary tailoring and proper pressure profile design. Two-step pressure profile itself did not show any efficient densification enhancement if no grain boundary modifier MgO added. The two-step pressure profile can effectively reduce average grain size and grain size difference over the sintered specimen, while MgO doping can reduce the average grain size in the whole sintered samples. Finally, a general strategy to overcome the intrinsic temperature gradient in SPS is suggested.  相似文献   

19.
Fully dense ceramics with retarded grain growth can be attained effectively at relatively low temperatures using a high-pressure sintering method. However, there is a paucity of in-depth research on the densification mechanism, grain growth process, grain boundary characterization, and residual stress. Using a strong, reliable die made from a carbon-fiber-reinforced carbon (Cf/C) composite for spark plasma sintering, two kinds of commercially pure α-Al2O3 powders, with average particle sizes of 220 nm and 3 μm, were sintered at relatively low temperatures and under high pressures of up to 200 MPa. The sintering densification temperature and the starting threshold temperature of grain growth (Tsg) were determined by the applied pressure and the surface energy relative to grain size, as they were both observed to increase with grain size and to decrease with applied pressure. Densification with limited grain coarsening occurred under an applied pressure of 200 MPa at 1050 °C for the 220 nm Al2O3 powder and 1400 °C for the 3 μm Al2O3 powder. The grain boundary energy, residual stress, and dislocation density of the ceramics sintered under high pressure and low temperature were higher than those of the samples sintered without additional pressure. Plastic deformation occurring at the contact area of the adjacent particles was proved to be the dominant mechanism for sintering under high pressure, and a mathematical model based on the plasticity mechanics and close packing of equal spheres was established. Based on the mathematical model, the predicted relative density of an Al2O3 compact can reach ~80 % via the plastic deformation mechanism, which fits well with experimental observations. The densification kinetics were investigated from the sintering parameters, i.e., the holding temperature, dwell time, and applied pressure. Diffusion, grain boundary sliding, and dislocation motion were assistant mechanisms in the final stage of sintering, as indicated by the stress exponent and the microstructural evolution. During the sintering of the 220 nm alumina at 1125 °C and 100 MPa, the deformation tends to increase defects and vacancies generation, both of which accelerate lattice diffusion and thus enhance grain growth.  相似文献   

20.
n-Type Ca0.9Yb0.1MnO3?δ thermoelectric (TE) powders were prepared by solid state synthesis (SSS) and co-precipitation method (Cop). The bulk TE materials were consolidated using conventional sintering (CS) and spark plasma sintering (SPS) respectively. The shrinkage behavior, as well as the sample densification strongly depends on the starting particle size. Consequently, the bulk samples from normal powder (SSS) and nano-powder (Cop) were prepared with similar density by using different sintering temperatures, of 1400 °C and 1200 °C, then 1200 and 950 °C for CS and SPS respectively. Such a decrease (up to 200 °C) of the sintering temperature is a consequent progress in terms of engineering for applications. Another advantage of the co-precipitation process compared to the conventional solid state synthesis is that, due to the small particle sizes and the decreased sintering temperature, grain growth was limited and TE properties were enhanced. The interest of the SPS process was also evidenced and we are presenting here the structural and microstructural investigations. In addition, the thermoelectric properties of samples prepared with two different processes were studied with the figure of merit of 0.18 at 750 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号