首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, attempts have been made to prepare nanocomposite type of hydrogels (NC gels) by crosslinking the polyacrylamide/montmorillonite (Na‐MMT) clay aqueous solutions with chromium (III). The X‐ray diffraction patterns of the NC gels exhibited a significant increase in d001 spacing between the clay layers, indicating the formation of intercalated as well as exfoliated type of morphology. Exfoliation of the clay layers through out the gel network was found to be predominated, which evidences the high interaction between the polyacrylamide segments and montmorillonite layers. Gelation time as well as variation of viscoelastic parameters such as storage modulus (G′) of the gel network during gelation process at 75°C was studied and followed by rheomechanical spectroscopy (RMS). The NC gels prepared with lower crosslinker concentration showed higher strength and elastic modulus compared with the similar but unfilled polyacrylamide gel. This distinct characteristic of the NC gels yields a gel network structure with high resistance towards syneresis at high temperature in the presence of the oil reservoir formation water. The effects of the composition, such as clay content, crosslinker concentration, and also water salinity upon the gelation rate, gel strength as well as rate of syneresis have been investigated. To optimize the injectivity of the intercalated polyacrylamide solution before the onset of gelation with the gel strength of the final developed gel, sodium lactate was employed as retarder. This was found to be effective to balance these two characteristics of the NC gels, which are aimed to be used for water shut‐off and as profile modifier in enhanced oil recovery (EOR) process during water flooding process. The nanocomposite gels showed much more elasticity and extensibility at low crosslinker concentration compared with the similar but unfilled gel, which makes the NC gels suitable as an in‐depth profile modifier, and also as an oil displacing agent in the heterogeneous oil reservoir in chemical EOR. Effects of the clay content on the thermal stability of the gel network have also been investigated by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) has been performed upon the NC‐gel samples. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2096–2103, 2006  相似文献   

2.
The rheological properties of some newly developed polymer compositions have been investigated with and without crosslinking. These polymer compositions were developed as a water shutoff and sand consolidation treatment agents for producing oil and gas wells. The effects of several variables on the rheology of the compositions were evaluated over a wide range of temperatures (25–110°C), shear rates (0–500 s?1), brine percentages (0–15%), crosslinker types and concentrations (0–3%), and polymer concentrations (6–50%). It was found that increasing the shear rate from 0 s?1 to 100 s?1 caused shear thinning and reduction of the viscosity of the dilute solutions (6–13%) from 25 cP to ~ 3 cP at 80°C. In contrast, for the concentrated solutions (20–50%), the viscosity dropped slightly in the shear rate range 0–10 s?1, and subsequently decreased more slowly up to shear rates of 500 s?1. The viscosities of all polymer solutions dropped by a factor of 2 as the brine concentration increased from 0% to 15%. Finally, aging time coupled with shear rates and higher percentages of crosslinkers accelerate the buildup of viscosity and gelation time of the polymer compositions. For concentrated solutions, shear rates ranging within 0–200 s?1 accelerated gelation time from 9.75 h to 2–3 h, when they were sheared at 80°C. The polymeric solutions exhibited Newtonian, shear‐thinning (pseudo‐plastic), and shear‐thickening (dilatant) behavior, depending on the concentration, shear rate, and other constituents. In most cases, the rheological behavior could be described by the power law. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Two dimensional (2D) materials stacked with Van der waals bonding to obtain a heterostructure have always generated tailored physical and chemical properties. In this paper, the development and application of single-phase 2D Bi2MoO6-reduced graphene oxide (BMO-RGO) heterostructure by one-pot supercritical water (SCW) method is reported for the first time. The as-synthesized nanocomposite of BMO-RGO with single-phase orthorhombic crystal structure is confirmed by XRD. The 2D nanoflake morphology was observed under transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Fourier transform infrared spectroscopy is performed to confirm the presence of BMO-RGO, RGO, and other functional groups, respectively. The specific capacities obtained through charge-discharge measurements from BMO and BMO-RGO heterostructure nanocomposites are compared and the optimization of RGO wt% is established. After 50 cycles, the capacity retention is around 202 mA h g?1 for BMO with 24 wt% RGO (BMO-24RGO) nanocomposite. This value is higher in comparison to pure BMO nanoflakes which have a capacity retention of 25 mA h g?1. These results show the influence of RGO content on the performance of electrochemical measurements when compared to pure BMO and BMO-24RGO electrodes. One-pot SCW synthesis is found to be a reliable method for the synthesis of BMO-RGO nanocomposite.  相似文献   

4.
To modify acrylamide (AAm) hydrogels for specialty applications, it was copolymerized with 2‐Hydroxypropyl methacrylate (HPMA) in different molar ratio at 25°C in 1:1 water–acetone solvent system, using ammonium persulphate (APS) and N,N,N,N‐tetramethyl ethylene diamine (TEMED) initiator–accelerator system. Two series of hydrogels were thus prepared using two different crosslinkers—ethylene glycol dimethacrylate (EGDMA) and N,N‐methylene bisacrylamide (N,N‐MBAAm). To affect property profile of the hydrogels, concentration of HPMA was varied over a range of five concentrations from 3.5 to 28 mM. Hydrogels were further functionalized by partial hydrolysis with NaOH and Hofmann amide degradation reaction. FTIR, Nitrogen analysis, and SEM were used to establish monomer reactivity and structure relationship of the hydrogels. Metal ion uptake was studied as a function of various structural aspects of the hydrogels. Water uptake behavior of the hydrogels was studied at constant time, temperature, and pH, both pre and post metal loading. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3040–3049, 2006  相似文献   

5.
The study proposes a new green extraction method of producing nano fibrillated cellulose (NFC) from softwood pulp (SWP) by using subcritical water/CO2. Subcritical water/CO2 led to a controlled hydrolysis of SWP and the treated SWP was fibrillated by sonication to produce NFC. Effect of process parameters (time, temperature, and pressure) on the crystallinity and thermal properties of NFC was studied to optimize the process conditions for controlled hydrolysis. The influence of the extraction process on the properties of prepared NFC was studied. Nanocellulosic materials were characterized by using field emission scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, wide-angle X-ray diffraction, and thermo gravimetric analysis. The NFC obtained at optimum process conditions (100 bar, 145°C, and 30 min) showed significantly high crystallinity (66%) and high yield (75–80%) compared to the NFC prepared by conventional mechanical grinding method. The present method of producing NFC uses water and pressurized CO2, and therefore, eliminate use of acids and chemicals. Plasticized poly vinyl alcohol (p-PVA) based nano composite with NFC shows significant improvement in thermal stability (36%), tensile strength (77%) with reduced water vapor transmission rate as compared to virgin p-PVA indicating their potential as nanofiller for making bio composites.  相似文献   

6.
A high yield of graphene oxide (GO) was chemically synthesized from graphite powder utilizing adjusted Hummer's method. The contents of acidic functional groups in GO were determined using potentiometric titration. Composite hydrogels dependent on graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid)/polyvinyl alcohol (GO/PAMPS/PVA) were synthesized utilizing a 60Co gamma irradiation source at different doses. The synthesized graphene oxide and composite hydrogels were portrayed via X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared analysis. The morphology of composite hydrogels was characterized by scanning electron microscope. The gel % and swelling % for the prepared hydrogel demonstrated that the swelling % of hydrogel increased with raising AMPS content. Whereas the increment of GO and increasing the irradiation dose lead to a reduction in the swelling %. The influences of pH, GO percentage, initial dye concentration, the adsorbent dosage, contact time, and temperature on the adsorption of basic blue 3 dye were evaluated and the adsorption capacity was 194.6 mg/g at optimum conditions; pH = 6, GO/PAMPS/PVA composite hydrogels with 5 wt% of GO, initial dye concentration = 200 mg/L, adsorbent dose = 0.1 g, solution volume = 50 mL after 360 min at room temperature (25°C). The adsorption of dye onto the GO/PAMPS/PVA composite hydrogels follows Pseudo-second-order adsorption kinetics, fits the Freundlich adsorption isotherm model.  相似文献   

7.
The effect of graphene oxide (GO) loading (0.03, 0.06, 0.09, 0.12, and 0.30 wt%) in the aqueous phase on the performance of reverse osmosis (RO) polyimide (PI) thin film composite (TFC) membrane was investigated. TFC and thin film nanocomposite (TFN) membranes were produced through interfacial polymerization and the imide linkage was confirmed by attenuated total reflection Fourier transform infrared spectroscopy. The spongy-like structure with vertical fingers of RO PI-GO TFN membranes was explored by top-surface and cross-sectional field emission scanning electron microscope (FE-SEM). The roughness of the membranes was determined. All PI-GO TFN membranes exhibited enhanced desalination performance in comparison with PI membranes. Samples with 0.06 wt% GO performed the best with a water flux of 31.80 L/m2/h, salt rejection of 98.8%, and very good antibiofouling properties. This hydrophilic membrane displayed significantly enhanced chlorine-resistance with water flux of 36.3 L/m2/h and salt rejection of 98.5%. This work provides a promising start for designing rapid water permeation PI-GO TFN membranes in water desalination.  相似文献   

8.
A novel CeO2–xSnO2/Ce2Sn2O7 pyrochlore stoichiometric redox cycle with superior H2 production capacities is identified and corroborated for two‐step solar thermochemical water splitting (STWS). During the first thermal reduction step (1400°C), a reaction between CeO2 and SnO2 occurred for all the CeO2–xSnO2 (x = 0.05–0.20) solid compounds, forming thermodynamically stable Ce2Sn2O7 pyrochlore rather than metastable CeO2‐δ. Consequently, substantially higher reduction extents were achieved owing to the reduction of CeIV to CeIII. Moreover, in the subsequent reoxidation with H2O (800°C), H2 production capacities increased by a factor of 3.8 as compared to the current benchmark material ceria when x = 0.15, with the regeneration of CeO2 and SnO2 and the concomitant reoxidation of CeIII to CeIV. The H2O‐splitting performance for CeO2–0.15SnO2 was reproducible over seven consecutive redox cycles, indicating the material was also robust. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3450–3462, 2017  相似文献   

9.
《Ceramics International》2021,47(21):30203-30220
Nowadays researchers are much interested in bioceramics for their use as biological implants. Researchers have succeeded to derive few bioceramic materials which show good biological response with living tissues. Few of the bioceramics are zirconia, hexagonal boron nitride and hydroxyapatite. Herein, the effects of zirconia nanoparticles and hexagonal boron nitride nanosheets in hydroxyapatite powder on the structural, mechanical, and biological properties were investigated. In this study, the formation of a potential composite with desired mechanical and biological properties is strongly anticipated. The present study is also proposed to provide further faces to improve osteogenic properties of the scaffolding material without altering the established mechanical and biological properties. Three different compositions in the system [(95-x)HAp-x(ZrO2)-5hBN] (x = 10, 20, 30) were prepared using a simple solid-state reaction technique. In the samples, significant phase was identified for HAp [Calcium Phosphate Hydroxide: Ca5(PO4)3(OH)]. SEM analysis of the composites revealed well-connected and uniform distribution of ZrO2 and HAp nanoparticles on h-BN sheets. The composite samples 65H30Z5B9h (65HAp-30ZrO2-5hBN sintered at 900 °C) and 65H30Z5B1T (65HAp-30ZrO2-5hBN sintered at 1000 °C) showed improved mechanical and tribological behaviors. These samples exhibited excellent mechanical properties like compressive strength, Young's modulus, toughness and density. The obtained values were 2.154 MPa, 0.0182 MPa, 553.82 MJ/m3, 2.29 g/cm3 for 65H30Z5B9h and 3.798 MPa, 0.0832 MPa, 231.59 MJ/m3, 2.31 g/cm3 for 65H30Z5B1T respectively. Cytotoxicity of the composites was studied on Drosophila fly and Mice calvarial osteoblasts cells at five different concentrations. Toxic effect of the composite 65H30Z5B1T on the fly was confirmed by phenotypic observations, trypan blue staining, pupal count, and larval crawling speed. Composite 65H30Z5B1T was found to be toxic in this study, but the composite 65H30Z5B9h was not. Further, cell viability, alkaline phosphates, and mineralization tests confirmed non-toxic property and enhanced osteogenic activities for the composite sample 65H30Z5B9h.  相似文献   

10.
In the present study N-(2-carboxbenzyl)chitosan (CBCS) 3D macroporous hybrid scaffolds with interconnected pore system, containing 0.5, 2.5, and 5?wt% TiO2 nanoparticles (nTiO2) and 2.5?wt% Bioglass 45S5 (BG) have been synthesized using freeze-drying technique. Compressive strength values verified that the modification of chitosan combined with the presence of inorganic fillers can attribute significant mechanical stiffness to the scaffold. The in vitro biomineralization test confirmed that all samples were bioinert as mineral deposits were detected with X-ray diffractometry after incubation in SBF. Cytotoxicity and biocompatibility of all scaffolds were tested by using and Wharton’s jelly–derived mesenchymal stem cells (WJ-MSCs) and human embryonic kidney 293 (HEK 293) cell line. Metabolic activity, proliferation, migration, and attachment to the scaffolds were examined. Cells appeared to attach around the superficial pores and migrate in them. Cells also maintained their morphology, proliferated, and migrated across the scaffolds and showed consistent and proved compatibility.  相似文献   

11.
采用水热法制备了颗粒状单斜相钒酸铋(BiVO4)/还原氧化石墨烯(rGO)复合催化剂。采用傅里叶红外光谱、拉曼光谱、X射线衍射和紫外-可见漫反射光谱对合成的复合材料做了表征。采用透射电镜、扫描电镜和氮吸附脱附实验对复合材料的表面形貌和表面积做了分析测试。实验结果表明,BiVO4复合物能选择性将CO2还原成甲醇,石墨烯的引入能很好地改善BiVO4光催化还原CO2的性能。当石墨烯的加入量为3%(质量分数)时,在氙灯功率为600 W的条件下,光照6 h后,BiVO4/rGO复合材料光催化还原CO2生成的甲醇产量达到513.1 μmol/L,比相同形貌的纯BiVO4的甲醇产量高73.6%。  相似文献   

12.
The process-structure-property correlationships in yttria-magnesia (YM) composite have been investigated. YM composite was synthesized using commercial powders via ball-milling route with three different grinding balls (Si3N4, Al2O3, ZrO2) having two different sizes (2 and 5 mm diameter). The alteration in grinding ball material and size produces sintered ceramic having different grain sizes (420–560 nm) and degree of phase mixing homogeneity (0.40–0.70). The contamination induced by the milling ball resulted in changes in Y2O3 and MgO defect chemistry, which influenced the grain growth behavior in the YM composite. The hot-pressed composite prepared using 2-mm Si3N4 ball-milled powders exhibited the finest grain size (420 nm) and better phase mixing homogeneity (0.63). The subsequent impact was seen on transmittance efficiency (71%) over the 3–7-μm wavelength range, which is ∼85% of the theoretical limit. The findings show that the selection of the right size and type of grinding ball for milling commercial powder is a simple and cost-effective way for scalable production of YM composite with high transmittance efficiency for infrared windows and dome applications.  相似文献   

13.
《Ceramics International》2023,49(13):21465-21470
Immediate research is needed to determine why monolayer carbon atom (rGO) composites function so poorly as humidity sensors. Here, an attempt is made on (x)rGo+(1-x)CoCr2O4(x = 0,0.1,0.2 and 0.3) composite for humidity sensor. The method is straightforward, cheap, and basic, making it ideal for mass-producing (x)rGo+(1-x)CoCr2O4 composite. In this research, we investigate whether or not the (x)rGo+(1-x)CoCr2O4 composite can be used to improve the responsiveness of humidity sensors at ambient temperature. The use of X-ray diffraction allows for the investigation of crystallinity, phase, and structure (XRD). Crystallite size were estimated and found 9–11 nm. Morphology of the samples were seen ultrathin, wrinkled, paper-like, spherical type image. Samples were subjected to study the humidity sensing behavior. Within the range of 11%–97% RH, CCR-most rGO's impressive sensing response was 92%. The compound's stability was evaluated over the course of three months, and its response time was found to be between 32 and 36 s. To illustrate the mechanism of humidity sensing, we will use the stages of an adsorption process. For x = 0.3 concentration we observed high sensing response.  相似文献   

14.
We investigated the effect of HMT (hexamethylenetetraamine) on the anodic growth of TiO2 nanotube arrays. The tube length increases to 4.3 μm with HMT concentration increasing to 0.04 mol·L-1. Adsorption of HMT on the TiO2 surface is shown to markedly decrease the chemical dissolution rate of tube mouth, resulting in longer nanotube length. Furthermore, Pt nanoparticles were successfully deposited on the surface of TiO2 nanotubes by ac electrodeposition method. The TiO2/Pt composites were characterized by field emission scanning electron microscope (FESEM), X-ray photoelectron spectra (XPS), and photoelectrochemistry. An enhancement in photocurrent density has been achieved upon modification of TiO2 nanotubes with Pt nanoparticles.  相似文献   

15.
《Ceramics International》2022,48(7):9434-9441
In this study, we investigated the effect of Ag addition on the photocatalytic reactivity of TiO2 nanoparticles (NPs). Controlled amounts of Ag were incorporated in TiO2 NPs using aerosol spray pyrolysis and subsequent calcination. Ag/TiO2 composite NPs containing different amounts of Ag (e.g., 0, 0.5, 1, 2, and 5 wt%) were successfully fabricated. The photodegradation performances of the as-prepared Ag/TiO2 composite NPs were tested using methylene blue (MB) solution under UV and visible light irradiation. Upon increasing the Ag content to 1 wt%, the resulting Ag/TiO2 composite NPs exhibited increased photocatalytic reactivity due to lowered bandgap energy, which promoted both charge generation and separation. However, when the Ag content exceeded 1 wt%, the photocatalytic reactivity of the resulting Ag/TiO2 composite NPs was considerably deteriorated due to the masking effect of the excess Ag on the reactive sites of TiO2. Hence, the incorporation of an optimized amount of Ag in the TiO2 matrix promotes the photocatalytic reactivity of Ag/TiO2 composite NPs by controlling their bandgap energy and charge generation and separation processes. These results could lead to the development of photodegradation active substances for water treatment in organic solutions.  相似文献   

16.
TiO2–SiO2 mixed oxides were prepared by sol–gel processes with one-stage (mix up fully hydrolyzed titania- and silica-sol), two-stage (with pre-hydrolysis) and modified two-stage synthesis routes. The photoresponse and AC impedance characterization of the derived catalysts are studied and correlated for the first time with the photocatalytic activities in water decomposition under UV illumination. Synergistic effects in terms of photocatalytic activity and electronic properties including band-gap energy, flat band potential and doping density were observed on atomically mixing TiO2 and SiO2 by the two-stage synthesis route. Meanwhile, the decline of photocurrent density were found on TiO2–SiO2 relative to bare TiO2, which could be attributed to low quality crystalline structure of the former compared to that of the latter. The superior photocatalytic performance of TiO2–SiO2 is ascribed to the higher flat band potential, band-gap energy, and doping density than those of bare TiO2.  相似文献   

17.
Constructing the stable, low-cost, efficient, and highly adaptable visible light-driven photocatalyst to implement the synergistic effect of photocatalysis and adsorption has been excavated a promising strategy to deal with antibiotic pollution in water bodies. Herein, a novel 3D ternary Z-scheme heterojunction photocatalyst Ni2P/Bi2MoO6/g-C3N4 (Ni2P/BMO/CN) was fabricated by a simple solvothermal method in which the broad spectrum antibiotics (mainly tetracyclines and supplemented by quinolones) were used as target pollution sources to evaluate its adsorption and photocatalytic performance. Notably, the Z-scheme composite significantly exhibit the enhancement for degradation efficiency of tetracycline and other antibiotic by using Ni2P nanoparticles as electron conductor. Active species capture experiment and electron spin resonance (ESR) technology reveal the mechanism of Z-scheme Ni2P/BMO/CN photocatalytic reaction in detail. In addition, based on the identification of intermediates by liquid chromatography–mass spectroscopy (LC–MS), the possible photocatalytic degradation pathways of TC were proposed.  相似文献   

18.
19.
This study investigated the potential use of molecularly imprinted polymer (MIP) submicron particles for the selective removal of trace 17β‐estradiol (E2) in water treatment. Methacrylate‐based MIP submicron particles were synthesized, in a one‐step suspension polymerization procedure, using ethylene glycol dimethacrylate (EGDMA) as the cross‐linker. After template removal, the particles could be used as a smart material for specific binding of E2. The submicron size of MIP particles facilitated uniform dispersion in water for up to 17 days. These particles were meritorious in mass transfer behavior, allowing phase partitioning of E2 molecules in water during a short treatment time. After 1‐mL water samples of different E2 concentrations were treated with 20 mg of MIP particles for 2 min, recovery percentages as high as 97% ± 3% were achieved. The specific binding capacity of these MIP particles was determined to be 15 mg E2/g. Nonimprinted polymer nanoparticles were also evaluated for nonspecific binding of E2, using 0.5 mg in 1 mL of water, to attain 64% ± 3% efficiency in 3 min towards general water treatment. A simple capillary electrophoresis method was successfully developed for the characterization of MIP and NIP particles. Apparently the less negative the electrophoretic mobility, the higher binding efficiency and faster binding kinetics the particles would exhibit with E2 due to less hindered Brownian diffusion. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
The influence of the support surface area on the activity and stability/deactivation of Au/CeO2 catalysts (2.7 wt% Au) in the water gas shift reaction in dilute water gas were investigated by kinetic measurements and in situ Diffuse Reflectance IR spectroscopy. For ceria support surface areas between 24 and 284 m2 g−1, the gold particle size is independent on the catalyst surface area (about 2.1 nm) up to 188 m2 g−1, and we found increased amounts of (i) Aun+, (ii) Ce3+, (iii) OH groups, and (iv) carbon containing adsorbed side products such as formates and carbonates for increasing surface area supports. Consequences of these results on the mechanistic understanding of the reaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号