首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应伟斌  袁新华  宋伟  程晓农 《塑料》2006,35(6):40-45
用机械混合、冷压成型和烧结的方法制备了不同质量分数(5%~30%)的玻纤和石墨填充聚四氟乙烯(PTFE)复合材料制品。用M-2000型磨损试验机评价了不同样品在干摩擦下的磨损性能,揭示了填料玻纤和石墨对PTFE复合材料磨损性能的影响,并对磨损机理进行了探讨。用扫描电镜(SEM)对试样磨损形貌进行观察。结果表明:对玻纤进行改性能极大地提高PTFE复合材料的耐磨性能,同时可提高复合材料硬度;玻纤和石墨协同作用,对改善PTFE摩擦磨损性能有比较显著的效果;20%玻纤 10%石墨填充PTFE复合材料有着较好的摩擦磨损性能。  相似文献   

2.
Polytetrafluoroethylene (PTFE) has excellent corrosion resistance and a low coefficient of friction; however, its high wear rate and low hardness severely limit its use. In the work, nano particles were used as fillers for PTFE. The composites were prepared by the homogeneous mixing of PTFE and other fillers and sintered at high temperatures. The work aimed to investigate the effect of various nano fillers (nanocarbon powders, graphene, fullerene, nano graphite powders, and nano copper powders) on the mechanical, thermal, and frictional properties of composites. The results of the experiments showed that the addition of graphene could improve the stress and strain values of the composites, and all the nano fillers could improve the thermal conductivity of the PTFE composites. The friction experiments showed that fullerenes could significantly improve the wear resistance of PTFE composites. In the theoretical simulation, the thermal conductivity of PTFE composites was predicted using ANSYS software, with the changes in the temperature and friction force in the friction process. The theoretical simulation results matched with the experimental values, which proved the accuracy of the theoretical simulations.  相似文献   

3.
利用冷压烧结法制备了不同含量的聚四氟乙烯/纳米碳化硅(PTFE/纳米SiC)复合材料。采用MM-200型摩擦磨损试验机在干摩擦条件下考察了纳米SiC含量及载荷对PTFE/纳米SiC复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面形貌,并探讨了其磨损机理。结果表明,纳米SiC能够提高PTFE/纳米SiC复合材料的硬度和耐磨性,当纳米SiC质量分数为7%时,PTFE/纳米SiC复合材料的磨损量最小,摩擦系数也最小;随纳米SiC含量的增加,其摩擦系数有所增大;随着载荷的增大,PTFE/纳米SiC复合材料的磨损量增加。  相似文献   

4.
The friction and wear behavior of Kevlar fabric composites reinforced by PTFE or graphite powders was investigated using a Xuanwu‐III friction and wear tester at dry sliding condition, with the unfilled Kevlar fabric composite as a reference. The worn surfaces were analyzed by means of scanning electron microscope, and X‐ray photoelectron spectroscopy. It was found that PTFE or graphite as fillers could significantly improve the tribological behavior of the Kevlar fabric composites, and the Kevlar fabric composites filled with 20% PTFE exhibited the best antiwear and antifriction ability among all evaluated cases. The transfer films established with two lubricants in sliding wear of composites against metallic counterparts made contributions to reducing friction coefficient and wear rate of Kevlar fabric composites. In particular, FeF2 generated in the sliding of Kevlar fabric composites filled with PTFE against counterpart pin improved the bonding strength between the transfer film and counterpart surface, which accounted for the lowest friction coefficient and wear rate of the Kevlar fabric composites filled with PTFE measured in the testing. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

5.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(vol.)% carbon fiber, PTFE + 30(vol.)% glass fiber, and PTFE + 30(vol.)% K2Ti6O13 whisker composite, were prepared. The friction and wear properties of these fiber- and whisker-reinforced PTFE composites sliding against GCr15-bearing steel (SAE52100 steel) under both dry and liquid paraffin lubricated conditions were studied by using an MHK-500 ring-block wear tester (Timken wear tester). Then the worn surfaces of these PTFE composites and the transfer films formed on the surface of GCr15-bearing steel were investigated by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of the PTFE composites reinforced with carbon fiber, glass fiber, and a K2Ti6O13 whisker can be greatly improved by lubrication with liquid paraffin, and the friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions. Meanwhile, the wear of the fiber- and whisker-reinforced PTFE composites in liquid paraffin lubrication increases with the increase of load, but the friction coefficients of these PTFE composites first decrease with the increase of load, and then increase with the increase of load. The variations of friction coefficients with load for these PTFE composites in liquid paraffin lubrication can be described properly by the Stribeck's curve as given in this article. However, when the load increases to the load limits of the PTFE composites, their friction and wear increase sharply. SEM and optical microscope investigations show that the interactions between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, create some obvious cracks on the worn surfaces of the PTFE composites. The creation and the development of the cracks reduce the load-carrying capacity of the PTFE composites, and therefore lead to the increase of the friction and wear of the PTFE composites under higher loads. Meanwhile, the transfer of the fiber- and whisker-reinforced PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1393–1402, 1998  相似文献   

6.
不同介质中聚四氟乙烯复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1       下载免费PDF全文
汪怀远  冯新  史以俊  何鹏  陆小华 《化工学报》2007,58(4):1053-1058
分别在碱液、水、油和干摩擦条件下考察了碳纤维和玻璃纤维填充聚四氟乙烯复合材料的摩擦磨损性能。利用SEM观察了不同介质中磨损面和对摩面的形貌,并探讨了其磨损机理。结果表明,不同介质中摩擦系数的大小关系是μ干>μ水或油>μ碱,磨损率是W水>W干>W碱或油。水、碱和油都不同程度地阻止了转移膜的形成。碱液和油具有很好的冷却与润滑作用,摩擦系数低,磨损小;然而水分子降低了填料和基体的界面粘接强度,造成犁削和磨粒磨损加重。  相似文献   

7.
The phase separation of sodium borosilicate glass with small additions of phosphorus and fluorine oxides has been investigated using dilatometry at a temperature of 550°C (the heat treatment time varies from 0.05 to 500 h). Two glass transition temperatures have been revealed in the dilatometric curves at heat treatment times of 65 h and more. The results indicate that the time of 65 h is enough to complete the phase separation in the glass at a temperature of 550°C.  相似文献   

8.
SiC一石墨填充PTFE复合材料的摩擦磨损性能研究   总被引:4,自引:2,他引:2  
在聚四氟乙烯(PTFE)中分别填充碳化硅(SiC),石墨及不同配比的SiC-石墨混合物,制备了具有不同力学和摩擦学性能的PTFE基复合材料。探讨了填料组成对材料硬度及干摩擦条件下与不锈钢环对磨时摩擦磨损性能的影响,并研究了PTFE基复合材料的磨损表面和磨屑形貌。结果表明,填充适量的SiC-石墨混合物既能增加PTFE的承载能力,又可保持良好的摩擦学性能;不同复合材料的磨损机理不同,磨损表面有磨屑形貌  相似文献   

9.
不同硅烷偶联剂对氧化镁填充导热尼龙6性能的影响   总被引:1,自引:0,他引:1  
分别用四种不同的硅烷偶联剂处理氧化镁,研究了不同偶联剂表面处理后的氧化镁填充尼龙-6导热复合材料的力学性能、热变形温度和导热性能。结果表明,硅烷偶联剂处理后氧化镁/尼龙6复合材料的强度、刚性和导热性能明显提高,热变形温度则略有上升。四种硅烷偶联剂对氧化镁表面处理效果从好至差依次顺序为KH792KH550KH160KH560。  相似文献   

10.
The cross-linked polytetrafluoroethylene (PTFE) and PTFE/carbon fiber (CF) composites were synthesized through electron beam irradiation in the molten state of PTFE at a controlled temperature of 340 ± 3°C under an inert gas atmosphere for this study. The wear resistance of raw (raw-PTFE), irradiated modified PTFE (RM-PTFE), and CF-reinforced PTFE composites were evaluated using a friction and wear testing machine. The testing was conducted under varying ambient temperatures and dynamic loads. After irradiation, the samples were sectioned into specific sizes for subsequent testing purposes. Under the test conditions of 4.64 MPa positive pressure, 800 rpm speed, and a duration of 300 s at 20°C, the wear amount of PTFE after irradiation modification is significantly reduced from 1.4103 mm to only 0.0233 mm, representing a remarkable reduction by a factor of 60. Similarly, under the test conditions of 4.64 MPa positive pressure, 200 rpm speed, and a duration of 300 s at 20°C, the friction coefficient of PTFE after irradiation modification is substantially decreased from an initial value of 0.13 to just 0.03. The observed improvement can be attributed to the transformation of PTFE's crystalline form into spherulite, accompanied by a significant enhancement in the degree of cross-linking within its molecular chain. The PTFE was supplemented with 10% CF prior to irradiation. Under the test conditions of a positive pressure of 4.64 MPa, rotation speed of 800 rpm, and a duration time of 300 s at 20°C, the wear amount of the composite material measured only 0.0007 mm, representing a reduction by a factor of 2000 compared to that observed for pure PTFE. This improvement can be attributed to the CF filler's high wear resistance properties and the composite's enhanced thermal conductivity.  相似文献   

11.
对表面处理与未处理纳米SiC填充的聚四氟乙烯(PTFE)复合材料进行力学与摩擦学性能测试,研究了纳米SiC含量和表面处理对复合材料力学和摩擦磨损性能的影响,用扫描电子显微镜对拉伸断面形貌进行观察,探讨了复合材料的增强机理。结果表明,未处理纳米SiC填充PTFE后,其复合材料的硬度和耐磨性均有不同程度的提高;表面处理纳米SiC后,PTFE/纳米SiC复合材料的拉伸强度、冲击强度、减摩性能均比未处理的有所提高;表面处理SiC在PTFE基体中有较好的分散性,与PTFE基体界面的结合较好,未处理纳米SiC在PTFE基体中分散性较差。  相似文献   

12.
The tribological properties and mass loss of polytetrafluoroethylene (PTFE) composites filled with carbon fiber (CF) or potassium titanate whisker (PTW) after the immersion in 30% sulfuric acid solution for 5 or 15 days were studied under different temperatures (25, 50, and 75°C). Results show that PTW/PTFE composites exhibit better anticorrosive and antiwear properties than those of CF/PTFE composites. Acid immersion has no obvious effect on the wear rate of the PTW/PTFE composite. The wear rate of CF/PTFE immersed for 15 days is thrice as much that of untreated composites and 3.6 times as much that of PTW/PTFE composites. Results also indicate that the wear rate of PTFE composites increases with the increasing corrosive mass loss rate and is more dependent on the corrosive mass loss rate rather than the friction coefficient. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
纤维填充PTFE复合材料的摩擦学研究   总被引:2,自引:0,他引:2  
在聚四氟乙烯(PTFE)中分别填充碳纤维(CF)、玻璃纤维(GF)及这两种纤维不同配比的混杂纤维(HF),制备了具有不同力学性能和摩擦磨损性能的PTFE基复合材料。探讨了填料组成对复合材料硬度和干摩擦条件下摩擦磨损性能的影响,并研究了PTFE基复合材料磨损表面的形貌学。结果表明,适量填充CF和GF均可提高PTFE的摩擦磨损性能,CF比GF效果更为显著;CF和GF的混杂纤维填充PTFE复合材料.表现出一定的协同性,比填充单种纤维,其效果更显著。  相似文献   

14.
Polytetrafluoroethylene (PTFE) composites filled with PTFE waste offer interesting combination of tribological properties and low cost. PTFE composites waste was mechanically cut and sieved into powders. PTFE composites filled with PTFE waste powders were prepared by compression molding. Friction and wear experiments were carried out in a reciprocating sliding tribotester at a reciprocating frequency of 1.0 Hz, a contact pressure of 5.5 MPa, and a relative humidity of (60 ± 5)%. PTFE materials slid against a 45 carbon steel track. Results showed that a PTFE composite (B) filled with 20 wt % PTFE waste exhibited a coefficient of steady‐state friction slightly higher than that of unfilled PTFE (A), while wear resistance over two orders of magnitude higher than that of unfilled PTFE (A). Another PTFE composite filled with PTFE waste and alumina nanoparticles exhibited the highest wear resistance among the three PTFE materials. This behavior originates from the effective reinforcement of PTFE waste as a filler. It was experimentally confirmed that the low cost recycling of PTFE waste without by‐products is feasible. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1035–1041, 2007  相似文献   

15.
表面处理Al2O3增强PTFE基复合材料的摩擦学性能   总被引:2,自引:1,他引:2  
利用MM-200型摩擦磨损试验机考察了表面处理与未处理纳米Al2O3对填充聚四氟乙烯(PTFE)复合材料摩擦学性能的影响,采用扫描电子显微镜观察试样混合效果和磨损表面形貌并分析其磨损机理。结果表明:填充PTFE摩擦系数比PTFE略有增加。纳米Al2O3可以提高PTFE耐磨性,表面处理纳米Al2O3在PTFE中能较均匀分散,其耐磨性比相同含量但未经表面处理的纳米Al2O3填充PTFE高一倍。导致PTFE磨损的重要机理是切削和粘着磨损。  相似文献   

16.
Four kinds of polytetrafluoroethylene(PTFE)-based composites, such as pure PTFE, PTFE+30%(v)PbO, PTFE+30%(v)Pb3O4, and PTFE+30%(v)Cu2O composite, were prepared. The friction and wear properties of these metal oxides filled PTFE composites sliding against GCr15 bearing steel in both dry and lubricated conditions were studied by using an MHK-500 ring-block wear tester. Then the worn surfaces of these PTFE composites and the transfer films of these PTFE composites formed on the surface of GCr15 bearing steel were examined by using a Scanning Electron Microscope (SEM) and an Optical Microscope, respectively. Experimental results show that the friction and wear properties of these metal oxide-filled PTFE composites can be greatly improved by liquid paraffin lubrication, and the friction coefficients can be decreased by one order of magnitude. Meanwhile, the interactions between liquid paraffin and metal oxide-filled PTFE composites, especially the absorption of liquid paraffin into the surface layers of these PTFE composites, reduce the mechanical strength and the load-carrying capacity of these metal oxide-filled PTFE composites. This leads to the deterioration of the friction and wear properties of these PTFE composites. Investigations of the frictional surfaces show that Pb3O4, Cu2O, and PbO enhance the adhesion of the transfer films to the surface of GCr15-bearing steel, and thus promote the transfer of the PTFE composites onto the surface of GCr15-bearing steel. Therefore, they greatly reduce the wear of the PTFE composites. However, the transfer of these PTFE composites onto the counterfaces can be greatly reduced by lubrication with liquid paraffin. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 85–93, 1997  相似文献   

17.
Five kinds of polytetrafluoroethylene (PTFE)‐based composites, pure PTFE, PTFE + 30(v)% MoS2, PTFE + 30(v)% PbS, PTFE + 30(v)% CuS, and PTFE + 30(v)% graphite (GR) composites, were first prepared. Then the friction and wear properties of these PTFE composites, sliding against GCr15‐bearing steel under both dry and liquid paraffin‐lubricated conditions, were studied by using an MHK‐500 ring‐on‐block wear tester. Finally, the worn surfaces and the transfer films of the PTFE composites formed on the surface of GCr15 bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that filling with MoS2, PbS, CuS, or graphite to PTFE can reduce the wear of the PTFE composites by two orders of magnitude compared to that of pure PTFE under dry friction conditions. However, the friction and wear‐reducing properties of these PTFE composites can be greatly improved by lubrication with liquid paraffin. Investigations of transfer films show that MoS2, PbS, CuS, and graphite promote the transfer of the PTFE composites onto the surface of GCr15‐bearing steel under dry friction conditions, but the transfer of the PTFE composites onto the surface of GCr15‐bearing steel can be greatly reduced by lubrication with liquid paraffin. SEM examinations of worn surfaces show that with lubrication of liquid paraffin, the creation and development of the cracks occurred on the worn surfaces of the PTFE composites under load, which reduces the load‐supporting capacity of the PTFE composites. This would lead to the deterioration of the friction and wear properties of the PTFE composites under higher loads (>600N). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 751–761, 1999  相似文献   

18.
Four kinds of polytetrafluoroethylene (PTFE)-based composites, such as pure PTFE, PTFE + 30(v)%Cu, PTFE + 30(v)%Cu2O, and PTFE + 30(v)%CuS composite, were prepared. Then the friction and wear properties of the PTFE composites filled with Cu, Cu2O, or CuS sliding against GCr15-bearing steel under both dry and liquid paraffin-lubricated conditions were studied by using an MHK-500 ring-block wear tester. Finally, the worn surfaces and the transfer films of these PTFE composites formed on the surface of GCr15-bearing steel were investigated by using a scanning electron microscope (SEM) and an optical microscope, respectively. Experimental results show that the antiwear properties of these PTFE composites can be greatly improved by filling Cu, Cu2O, or CuS to PTFE, and the wear of these PTFE composites can be decreased by two orders of magnitude compared to that of pure PTFE under dry friction conditions. Meanwhile, CuS increases the friction coefficient of the PTFE composite, but Cu and Cu2O reduce the friction coefficients of the PTFE composites. However, the friction and wear properties of Cu, Cu2O, or CuS-filled PTFE composites can be greatly improved by lubrication with liquid paraffin. The friction coefficients of these PTFE composites can be decreased by one order of magnitude compared to those under dry friction conditions, while the wear of these PTFE composites can be decreased by one to two orders of magnitude. The PTFE + 30(v)%Cu composite exhibits excellent friction and wear-reducing properties under higher loads in liquid paraffin-lubricated conditions, so the PTFE + 30(v)%Cu composite is much more suitable for application under oil-lubricated conditions in practice. Optical microscope investigation of transfer films shows that Cu, Cu2O, and CuS enhance the adhesion of the transfer films to the surface of GCr15-bearing steel, so they greatly reduce the wear of the PTFE composites. However, the transfer of the PTFE composites onto the surface of GCr15-bearing steel can be greatly reduced by lubrication with liquid paraffin, but the transfer still takes place. SEM examination of worn surfaces shows that the interaction between liquid paraffin and the PTFE composites, especially the absorption of liquid paraffin into the surface layers of the PTFE composites, creates some cracks on the worn surfaces of Cu2O or CuS-filled PTFE composites, the creation and development of the cracks reduces the load-carrying capacity of the PTFE composites; this leads to the deterioration of the friction and wear properties of the PTFE composites under higher loads in liquid paraffin lubrication. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1455–1464, 1998  相似文献   

19.
路琴  张静  何春霞 《中国塑料》2008,22(4):21-24
利用摩擦磨损试验机考察了填料含量及载荷对纳米氮化钛(TiN)填充聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响,采用扫描电子显微镜观察分析磨损表面形貌,探讨了磨损机理。结果表明,纳米TiN可以提高PTFE的硬度和耐磨性,当纳米TiN质量分数为7%时,PTFE纳米TiN复合材料的磨损量最小;随载荷的增大,PTFE/TiN复合材料的磨损量增加。PTFE纳米TiN复合材料的摩擦因数比纯PTFE小。  相似文献   

20.
汪怀远  朱艳吉  冯新  陆小华 《化工学报》2009,60(7):1812-1817
分别研究了不同含量钛酸钾晶须(PTW)、碳纤(CF)填充聚四氟乙烯(PTFE)复合材料在硫酸溶液中和干摩擦条件下摩擦学性能以及酸中的耐蚀性能,借助SEM等分析探讨了相关机理。结果表明,酸中纯PTFE耐磨性较干摩擦条件下提高了2个数量级,摩擦系数也只有干摩擦的15.3%。与CF/PTFE相比,PTW/PTFE复合材料在酸中显示更好的耐蚀和耐磨性能。PTW可以进一步提高PTFE酸中耐磨性能、降低摩擦系数。含15%(质量)PTW时复合材料具有最低的磨损率,此时比纯PTFE酸中耐磨性提高13.8倍,是相同含量CF/PTFE耐磨性的3.2倍。由于酸溶液的冷却和润滑作用,复合材料的摩擦系数与干条件相比明显降低。然而,酸溶液阻止了转移膜的形成。不管是干摩擦还是在酸性溶液中,当填料含量超过15%(质量)时,犁削和磨粒磨损是PTFE复合材料的主要磨损机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号