首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(16):13670-13676
Nickel oxide nanoparticles with an average size of between 28 and 62 nm were fabricated by electric arc discharge method. The electric currents of 10, 100, 200, 300 and 400 A and oxygen pressures of 1, 2 and 3 atm. were tested. High yield production was observed for the samples prepared at low arc current. The samples were characterized using XRD and FESEM measurements. XRD results showed that the samples were pure and single phase of nickel oxide with cubic structure. The produced nanoparticles were cubic shaped and the average particle sizes increased by increasing the arc pressure, but decreased by increasing the arc current and their size distributions were uniform. The magnetic measurements confirmed a soft ferromagnetic behavior for the nickel oxide nanoparticles at low field region but the hysteresis loop tended to be antiferromagnetic like for the higher fields. By decreasing the particle size from 62 nm, the coercivity (Hc) increased but decreased when the particle size was less than about 57 nm. Such magnetic behavior which can be common for antiferromagnetic nanoparticles was interpreted based on a core-shell model.  相似文献   

2.
Boron nitride (BN) fullerenes and nanotubes were obtained by applying the arc-melting method to a powder mixture of boron and iron oxide in a nitrogen gas. BN fullerenes of size 0.7 nm were observed. Angular tips of BN nanotubes of diameter 6.6 nm and length 50–100 nm were also observed. When using a powder mixture of boron and gold, BN fullerenes and nanotubes were not obtained. Atomic structure models for BN fullerene and nanotube were proposed, and the (BN)36 cluster was found to be stable in spite of the existence of distorted six- and four-membered rings. The density of states for the cluster was calculated theoretically, and is similar to that of hexagonal BN. The prime novelty of the study is that BN fullerenes and BN nanotubes can be synthesized by a simple arc-melting method, and the stability of their atomic structure and the electronic state were predicted by theoretical calculations.  相似文献   

3.
《Ceramics International》2017,43(13):10192-10200
A spray drying and pyrolysis synthesis route was developed and it successfully prepared boron nitride (BN) nanoparticles with high dispersivity. During the experiment, the extremely rapid drying of the boric acid/urea solution during the spray-drying process resulted in the formation of homogeneous precursors, which was the key for the final pyrolysis synthesis of BN nanoparticles with high dispersibility and uniform diameters (~20 nm). Compared with boron nitride synthesized without using spray drying, the as-prepared BN nanoparticles possess higher specific surface area (145.01 m2 g−1) and larger pore volume (0.41 cm3 g−1). Especially, we used the BN nanoparticles as lubricant and incorporated it into the liquid paraffin (LP). The experiment results show that the LP presents outstanding antifriction properties for a BN content of 1.5 wt%. These results suggest that the h-BN nanoparticles have significant potential applications in the field of tribology.  相似文献   

4.
Hemoglobin (Hb) was used as a catalyst for the growth of single-walled carbon nanotubes (SWCNTs). Hb was deposited onto a hydrophilic treated substrate by spin coating method. After oxidation at 800 °C, protein chains were decomposed and iron oxide nanoparticles remained with an average diameter of 2.29 nm. High quality SWCNTs were synthesized with an average diameter of 1.22 nm. The protein chains prevent iron atoms aggregation and so the size of the nanoparticles is smaller than that from ferritin-like proteins.  相似文献   

5.
Boron nitride (BN) films with different cubic and hexagonal phase compositions were deposited on silicon substrates via diamond interlayers by magnetron sputtering and electron cyclotron resonance microwave plasma chemical vapor deposition. The tribological behaviors of the BN films were investigated systematically using a ball-on-disc tribometer with silicon nitride as the counterpart. Comparison studies were also performed on sintered cubic and hexagonal BN compacts. The influence of phase compositions and surface roughness of BN coatings on their tribological characteristics was studied. The cubic BN (cBN) films showed excellent wear resistance against silicon nitride. The wear rate of the cBN films was estimated to be about 1.0 × 10?7 mm3/N m by measuring the cross-sectional area of the wear track after the sliding test over a distance of 12 km.  相似文献   

6.
Bamboo-type boron nitride (BN) nanotubes with cup-stacked structures were produced by annealing of Fe4N and boron particles at 1000 °C for 5 h in nitrogen atmosphere. The iron nitride particles were reduced to α-Fe. Atomic structure models and the formation mechanism were proposed from the results of high-resolution electron microscopy (HREM), image simulations and molecular mechanics calculations. The nanotube structures would be stabilized by stacking of BN cup-layers.  相似文献   

7.
《Polymer》2007,48(3):720-727
In situ precipitation of iron oxide nanoparticles within the cross-linked styrene-(N-4-carboxybutylmaleimide) copolymer was carried out by an ion-exchange method. The resulting composite was studied by X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopies. FTIR analysis showed the evolution of iron oxide deposition and the formation of sodium carboxylate due to the deposition treatment. In addition, XPS analysis indicated the complete oxidation of iron(II) to iron(III) by the presence of the representative peaks of iron oxide and iron oxyhydroxide. X-ray diffraction analysis was used to identify the inorganic phases. The results showed the formation of maghemite (γ-Fe2O3), and after several deposition cycles, goethite (α-FeOOH). The morphology and spatial distribution of iron oxide particles within the copolymer matrix were determined by transmission electron microscopy. The mean particle size of the iron oxide was of 14 nm as determined from wide-angle X-ray diffraction using the Scherrer equation. The evolution of magnetic properties with the number of deposition cycles was investigated by magnetometry at room temperature. The poly(styrene-co-N-4-carboxybutylmaleimide)/γ-Fe2O3/α-FeOOH/composite showed a soft ferrimagnetic behavior and, after the third deposition cycle, showed a saturation magnetization of 8.04 emu/g at 12 kOe and coercivity field of 51 Oe.  相似文献   

8.
The influence of pulsed electric current sintering (PECS) temperature on the properties of bulk materials consolidated from three different types of hybrid powders have been studied. These powders consisted of iron oxide–silica coreshell structure, silver doped iron oxide–silica coreshell structure and, silver doped silica. The powders were prepared using a modified Stöber method. The sintering temperature was varied from 873 K up to 1273 K and sintering pressure and time were 50 MPa and 15 min respectively. Porous structures were obtained with relative densities from about 58 to 68%. Sintering temperature induced the growth of silver nanoparticles on the silica surfaces. Oxidation of the iron oxide during the compaction was affected by thermal decomposition of silver oxides. Sintering temperature changed the magnetic properties of iron oxide compacts via crystallite growth and oxide transformation. At temperature higher than 1173 K, iron oxide was reduced into pure iron (α-Fe).  相似文献   

9.
The properties of the bulk materials consolidated of silica coreshell powders with iron oxide core have been studied. Iron oxide nanoparticles smaller than 20 nm in size were synthesized by a reverse co-precipitation process in ambient atmosphere. Coreshell structures with various amounts of iron oxide were prepared via a modified Stöber method. The powders were compacted by using pulsed electric current sintering (PECS) at 1373 K. The morphologies, microstructures, phases, optical, and magnetic properties of the samples were studied by using transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), UV–visible spectroscopy (UV–Vis), and vibrating sample magnetometer (VSM). Transmittance values in the 250–800 nm range varied with the amount of iron oxide. Sample with the lower content was transparent while the sample with the highest content was opaque with microporosity. The compact with the highest iron oxide content showed the ferromagnetic behaviour at 300 K. The phase transformations in the coreshell powders during the sintering process are discussed.  相似文献   

10.
Using a newly developed method, carbon-encapsulated iron (Fe) nanoparticles were synthesized by plasma due to ultrasonication in toluene. Fe core with carbon shell nanoparticles were characterized using Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM). Fe nanoparticles of diameter 7–115 nm are encapsulated by 7–8 nm thick carbon layers. There was no iron carbide formation observed between the Fe core and the carbon shell. The Fe nanoparticles have body centered cubic (bcc) crystal structure. Synthesized nanoparticles showed a saturation magnetization of 9 A m2/kg at room temperature. After thermal treatment crystalline order of the nanoparticles improved and saturation magnetization increased to 24 A m2/kg. We foresee that the carbon-encapsulated Fe nanoparticles are biologically friendly and could have potential applications in Magnetic Resonance Imaging (MRI) and photothermal cancer therapy.  相似文献   

11.
《Ceramics International》2017,43(8):6371-6376
Hybrid nanocomposites consisting of uniform Fe3O4 nanoparticles and boron nitride (BN) nanospheres were synthesized via an ethanol-thermal reaction method. The spherical BN nanoparticles (BNNSs) with average diameter 150 nm have been uniformly coated with dense ultra-small Fe3O4 nanoparticles (with average diameter of 10 nm), forming novel Fe3O4@BNNS nanocomposites. Magnetic measurement by using vibrating sample magnetometer (VSM) indicates that the Fe3O4 coating is superparamagnetic, and the nanocomposites can be physically manipulated at a low magnetic field. Preliminary biocompatibility study has also been performed to evaluate the toxicity of the nanocomposites. The nanocomposites show cytocompatibility at low concentration and have little effect on cell viability of MCF-7, MCF-10 and Hela cell lines. The Fe3O4@BNNS nanocomposites may find a wide range of potential applications including water treatment, catalysts, carriers for boron neutron capture therapy and magnetic-targeted drug delivery.  相似文献   

12.
Fe-embedded multi-wall carbon nanotubes (MWCNTs) were fabricated using Fe-catalyst by the chemical deposition method. Microscopic characterizations showed that the well-aligned MWCNTs were ~ 80 mm in length, with outer diameter of 20–50 nm and inner diameter of 10–20 nm. Magnetic properties were characterized in temperatures of 5 K and 305 K, which revealed that the MWCNTs exhibited high coercivity of 2600 Oe at 5 K and 732 Oe at 305 K. These values are much higher than that of bulk iron (~ 0.9 Oe) and Fe/Co/Ni nanoparticles or nano-wire arrays (~ 200–500 Oe) at the room temperature. This high coercivity and the structure of single-domain Fe nanoparticles isolated by anti-ferromagnetic MWCNTs make it a promising candidate for low-dimensional high-density magnetic recording media.  相似文献   

13.
By alternating deposition of graphene oxide (GO) sheets and silver nitrate by means of an electrostatic self-assembly method, a GO–Ag+ film was prepared. After thermal annealing, a graphene–silver nanoparticle (GE–Ag) multilayer film, with high transparency and electrically conductivity, was obtained. The transmittance of a film with four assembly cycles was 86.3%, at a wavelength of 550 nm, better than that of a pure GE film (73.8%). While the surface resistance was 97  ?1, much lower than that of a pure GE film (430  ?1). The Ag nanoparticles play a crucial role in improving the properties of the GE–Ag film, acting as conductive paths and light-trapping nanoparticles, which not only reduces the reflection of the film, but also prevents the GE sheets from aggregation and provides conductive paths between sheets, improving the electrical conductivity.  相似文献   

14.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

15.
Single-walled carbon nanotubes (SWCNTs) with a narrow diameter distribution were synthesized by using polymerized hemoglobin (PolyHb). PolyHb containing 11 Hb molecules (11-PolyHb) was separated from a mixture of PolyHb with various degrees of polymerization by using size-exclusion chromatography (SEC). After the deposition and oxidation of 11-PolyHb, we obtained iron oxide nanoparticles with an average diameter of 1.30 ± 0.36 nm. SWCNT were grown from these nanoparticles with a narrow diameter distribution, 1.08 ± 0.26 nm. This technique has the potential to synthesize SWCNT with an identical diameter, and to control the diameter of SWCNT at atomic resolution through improvements to the SEC processing.  相似文献   

16.
Hexagonal boron nitride (BN), with a graphite-type structure and with surface area of 184 m2/g was used as a support for palladium oxide (PdO/BN). About 1 wt% of palladium was deposited on BN by incipient wetness method by using palladium nitrate as precursor. The support and the catalyst were characterized by BET, TEM, XRD, XPS, ICP, TG, TPD, in situ ac electrical conductivity and by ammonia adsorption microcalorimetry. Oxidation of propylene and methane were used as model reactions to study the catalytic properties of the PdO/BN catalyst. The BN support was practically inactive in propylene oxidation up to 400 °C, while the onset of the oxidation was detected around 200 °C on PdO/BN, which points out the role of the palladium in adsorption of the reactive hydrocarbon species. At the same time, this temperature is coincident with the increase of the electronic conductivity on both BN and PdO/BN samples, which is important for oxygen adsorption/activation as electrophilic species. The catalyst was inactive in methane oxidation below 400 °C. Only about 2% CH4 conversion was observed at 400 °C, increasing sharply up to 87% at 550 °C with methane transformation only to CO2 and water.  相似文献   

17.
A facile direct precipitation method has been developed for the synthesis of multi-functional magnetic, microwave to heat responsive properties with Fe3O4 nanoparticles as the core and WO3  x as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bi-functional nanoparticles had a core-shell structure and a spherical morphology. The average size was ~ 250 nm, and the thickness of the shell was ~ 15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and the WO3  x shell were obtained. The nanoparticles showed both strong magnetic, and unique microwave to heat responsive properties, which may lead to development of nanoparticles with great potential for applications in drug targeting delivery, controlled release drug, photo- and microwave-thermal combination therapy and water treatment.  相似文献   

18.
Reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was synthesized using a novel modified sol–gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed γ-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g−1 at current density of 500 mA g−1 and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g−1 after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g−1 at 10C (∼10,000 mA g−1). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions.  相似文献   

19.
Silicon dioxide (thickness 350 nm and 969 nm) and silicon nitride (thickness 218 nm) films deposited on silicon substrate using plasma enhanced chemical vapor deposition process were investigated using a Berkovich nanoindenter. The load-depth measurements revealed that the oxide films have lower modulus and hardness compared to the silicon substrate, where as the nitride film has a higher hardness and slightly lower modulus than the substrate. To delineate the substrate effect, a phenomenological model, that captures most of the ‘continuous stiffness measurement’ data, was proposed and then extended on both sides to determine the film and substrate properties. The modulus and hardness of the oxide film were around 53 GPa and 4–8 GPa where as those of the nitride film were around 150 GPa and 19 GPa, respectively. These values compare well with the measurements reported elsewhere in the literature.  相似文献   

20.
《Ceramics International》2015,41(4):5798-5806
This work explored the synthesis of rGO sheets from graphene oxide (GO) using hydrazine solvent as reducing agent through chemical reduction. Meanwhile, GO films with a 2D structure were prepared from graphite flakes (starting material with an average flake size of 150 nm) by an Improved Hummer׳s method. Results showed that the chemical oxidation of graphite flakes carried out at room temperature could be used to prepare GO sheets in the initial stage. The conversion of GO into large-area rGO sheets with ~85% of carbon content could then be achieved by chemical reduction. RGO sheets with a lateral dimension of up to ~45 nm were obtained, which indicated the formation of an extremely thin layer of rGO sheets. A high degree of GO reduction was also realized using a high stirring speed (1200 rpm) for 72 h in a mixture of acids and potassium permanganate, resulting in a high carbon content of rGO with a large lateral dimension and area. Overall, our Improved Hummer׳s method with a high stirring speed (1200 rpm) for 72 h provided an easy approach to the preparation of large-area and ultrathin rGO sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号