首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work discusses the effect of isopropyl phosphate (IP) on the transport properties of sulfonated poly(styrene-isobutylene-styrene) (SO3H SIBS) as membranes for direct methanol fuel cell (DMFC) and chemical and biological protective clothing (CBPC) applications. The properties were determined as a function of SIBS sulfonation level (i.e., 24, 34, 49, and 84 mol %) and IP loading (i.e., 1, 3, 5, 11, and 15 wt %). A comprehensive material characterization study (e.g., FTIR, TGA, AFM, and SAXS) was performed to confirm the presence of the phosphate groups in the polymer matrix, assess the thermal stability of the proton-exchange membranes (PEMs), and understand how the unique interactions between the phosphate and sulfonic groups influenced the nanostructure of SO3H SIBS. The transport properties, water absorption capabilities (i.e., swelling ratio, water uptake, etc.), oxidative stability, and ion-exchange capacity (IEC) were performed to evaluate the impact of IP on the properties of the resulting solvent-casted membranes. Results suggest that the morphology, thermal stability, and vapor permeability are governed by the sulfonation level, whereas the IEC, oxidative stability, water absorption capabilities, and the rest of the transport properties are dominated by the ionic content (i.e., sulfonic and phosphate groups) and their synergistic effects. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47009.  相似文献   

2.
A composite membrane of sulfonated poly(ether sulfone) (SPES)/poly(ether sulfone) (PES) nanofiber (NF) mat impregnated with Nafion was prepared and evaluated for its potential use as a proton conductor for proton exchange membrane (PEM) fuel cells. The supporting composite nanofibrous mat was prepared by solution blowing of a mixture of SPES/PES solution. The characteristics of the SPES/PES NF and the composite membrane, such as morphology, thermal stability, and performance of membrane as PEMs, were investigated. The performance of composite membranes was compared with that of Nafion117. The introduction of solution blown NFs to composite membranes modestly improved proton conductivity, water swelling, and methanol permeability. Therefore, composite membrane containing SPES/PES NFs can be considered as a novel PEM for fuel cell applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42572.  相似文献   

3.
Sulfonated brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPOBr) was synthesized by a sequence of bromination and sulfonation. A thin film of SPPOBr was coated on top of a commercial poly(ether sulfone) membrane. Pure butoxyethanol (BE) solvent or a BE/isopropyl alcohol (IPA) solvent mixture was used to dissolve SPPOBr in the coating process. The thin film composite membranes so prepared were then tested for the separation of carbohydrate and electrolyte solutes. We found that the flux and the carbohydrate separation both increased significantly with increasing IPA content in the solvent mixture. However, the separation of electrolyte solutes did not change significantly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2624–2628, 2004  相似文献   

4.
In this study, sulfonated poly(arylene ether sulfone) (SPAES) and sulfonated poly(arylene ether ketone) (SPAEK) were randomly synthesized, employing a presulfonation process. This presulfonation process resulted in a more controlled and reproducible sulfonation level. The respective polymers were prepared using 2,2-Bis(4-hydroxyphenyl) propane at 50% molar ratio, which also provided some membrane elasticity. The resulting polymers, each had 25% of the block containing the sulfonic domains (SPAES A 25 and SPAEK A 25). Better conductive membranes were achieved for the random sulfone polymers than for the random ketone polymers, with values, respectively, of 0.24 and 0.07 S cm−1 at 80°C. The lower proton conductivity from the ketone-based polymer was compensated with very low methanol permeability (0.25 × 10−6 cm2 s−1) and outstanding oxidative stability. The selectivity of both polymer membranes exceeded the reported values for the state-of-the-art Nafion® 117 and other commercially available options. Both polymer membranes, with their unique combination of ionic domains, elastomeric blocks, and resulting morphology, could be viable candidates for fuel cell applications.  相似文献   

5.
In this study, itaconic acid (IA) was grafted onto poly(vinyl alcohol) (PVA) with cerium(IV) ammonium nitrate as an initiator at 45°C. The grafted PVA was characterized with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. IA‐grafted PVA membranes were prepared with a casting method, and the permeation and separation characteristics of acetic acid/water mixtures were investigated with pervaporation (PV), evapomeation (EV) and temperature‐difference evapomeation (TDEV) methods. The effects of the feed composition, operating temperature, and temperature of the membrane surroundings on the permeation rate and separation factor for the acetic acid/water mixtures were studied. The permeation rates in EV were lower than those in PV, whereas the separation factors were higher. With the TDEV method, the permeation rates decreased and the separation factors increased as the temperature of the membrane surroundings decreased. The prepared membranes were also tested in PV, EV, and TDEV to separate the various compositions of the acetic acid/water mixtures (20–90 wt % acetic acid) at 40°C. The highest separation factor, 686, was obtained in TDEV with a 90 wt % acetic acid concentration in the feed. The activation energies of permeation in PV and EV were calculated to be 8.5 and 10.2 kcal/mol, respectively, for a 20 wt % acetic acid solution. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2322–2333, 2004  相似文献   

6.
A process for purifying aqueous solutions containing macromolecular proteins such as bovine serum albumin (BSA), egg albumin (EA), pepsin, and trypsin has been investigated. Protein removal from food and biorelated industrial waste streams are gaining increased visibility due to environmental concern and saving precious materials. Ultrafiltration (UF) processes are largely being applied for protein separation from aqueous streams. In this work, an attempt has been made to separate the valuable proteins using cellulose acetate (CA)/sulfonated poly(ether imide) (SPEI) blend UF membranes prepared in the absence and presence of the additive, polyethyleneglycol (PEG600) in various compositions. The blend membranes were subjected to the determination of pore statistics and molecular weight cut‐off (MWCO). Porosity and pore size of the membranes increased with increasing concentrations of SPEI and PEG600 in the casting solution. Similarly, the MWCOs of the blend membranes ranged from 20 to greater than 69 kDa, depending on the various polymer blend compositions. Surface morphology of the blend membranes were analyzed using scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of proteins. On increasing the concentration of SPEI and PEG600, the rejection of proteins is decreasing, whereas the permeate flux has an increasing trend. The effect of hydrophilicity of SPEI on fouling of protein for CA/SPEI blend membranes was also discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Novel membranes based on sulfonated poly (phenylene oxide) (SPPO) was developed. SPPO membranes in the hydrogen form were converted to metal ion forms. The effect of exchange with metal ions including monovalent (Li+, Na+, K+), divalent (Mg2+, Ba2+, Ca2+) and trivalent (Al3+) ions was investigated in terms of permeation rate and permeation rate ratios for CO2 and CH4 gases. Both dense homogeneous membranes and thin‐film composite (TFC) membranes were studied for their gas separation characteristics. The effect of membrane preparation conditions and operating parameters on the membrane performance were also investigated. The selectivity of the TFC membrane increased as the cationic charge density increased as a result of electrostatic cross‐linking. TFC membrane of very high selectivity was achieved by coating a thin layer of SPPO‐Mg on a PES substrate. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 735–742, 2000  相似文献   

8.
The permeation behaviors of water vapor and gases were studied for both PPO and SPPO of different sulfonation degree. It was found that the permeability of water vapor increased, and those of oxygen and nitrogen decreased; thus the selectivity for water vapor over gases increased remarkably with the increase of sulfonation degree. The possibility of using SPPO as a gas dehumidification membrane material is discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
In this work, three dianhydrides with similar chemical structures, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA), 4,4′‐oxydiphthalic anhydride (ODPA), and pyromellitic dianhydride (PMDA), are employed for the crosslinking modification of poly(vinyl alcohol) (PVA) membranes for ethanol dehydration via pervaporation. The changes in crosslinking degree, surface hydrophilicity, and glass‐transition temperature are investigated and compared. Compared to the pure PVA membrane, all crosslinked membranes show higher fluxes but lower separation factors, because of the higher fractional free volume and the lower hydrophilicity by the crosslinking of the PVA matrix, respectively. In addition, all crosslinked PVA membranes exhibit similar flux, and the separation factor presents a decreasing order of PVA/PMDA‐2 > PVA/ODPA‐2 > PVA/BTDA‐2, which is in the reverse order of their hydrophilicity, probably because of the reduction in the swelling resistance. With the PMDA content increasing from 0.01 to 0.04 mol/(kg PVA) in the PVA/PMDA crosslinked membranes, the crosslinking degree is enhanced and the hydrogen bonding is weakened, resulting in a flux increase from 120.2 to 190.8 g m?2 h?1, but the separation factor declines from 306 to 58. This work is believed to provide useful insight on the chemical modification of PVA membranes for pervaporation and other membrane‐based separation applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46159.  相似文献   

10.
The permeabilities of various aqueous alcohol solutions through cellulose membranes were investigated by changing the preparation conditions of membranes, the feed concentration, and the feed solute, etc. The permeation rates for aqueous solutions of alcohols, glycols, glycerol, trihydroxyl benzene were greater than for pure water. This permeation phenomenon could be explained by some permeation models considering water cluster, activation of water molecules (second bound water-like) attached weakly to the bound water in cellulose membrane, and the surface of cellulose membrane, and plasticization of cellulose molecules.  相似文献   

11.
A series of semihomogeneous cation‐exchange membranes were prepared with binary blend systems, such as sulfonated phenolphthalein poly(ether ether ketone) (SPEEK‐C)/sulfonated poly(phenylene sulfide) (SPPS), or ternary blend systems, such as phenolphthalein poly(ether ether ketone) (PEEK‐C)/SPEEK‐C/SPPS, by solution blending and phase inversion, in which PEEK‐C and SPEEK‐C acted as binders and SPPS powder acted as a polyelectrolyte. Compared with homogeneous and heterogeneous membranes, the prepared semihomogeneous membranes had good electrochemical properties and mechanical strength as well as good dimensional stability. The fundamental properties of the membranes, such as the ion‐exchange capacity, water content, electrical resistance, transport number, diffusion coefficient of the electrolytes, and streaming potential, were largely dependent on both the loading of the SPPS resin and the sulfonation degree of PEEK‐C. Through the adjustment of these two important parameters, a series of semihomogeneous membranes with the desired conductivity and selectivity and the proper water content for different industrial purposes, such as electrodialysis, diffusional dialysis, and proton exchange, were achieved. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1478–1485, 2004  相似文献   

12.
In this study, the transport properties of poly(styrene‐isobutylene‐styrene) (SIBS) were determined as a function of sulfonation level (0–94.9%) and counter‐ion substitution (Ba+2, Ca+2, Mg+2, Mn+2, Cu+2, K+1) for fuel cell applications. Increasing the sulfonation level improved the ion exchange capacity (IEC) of the membranes up a maximum (1.71 mequiv/g), suggesting a complex three‐dimensional network at high sulfonation levels. Results show that proton conductivity increases with IEC and is very sensitive to hydration levels. Methanol permeability, although also sensitive to IEC, shows a different behavior than proton conductivity, suggesting fundamental differences in their transport mechanism. The incorporation of counter‐ion substitution decreases both methanol and proton transport. Methanol permeability seems to be related to the size of the counter‐ion studied, while proton conductivity is more sensitive to water content, which is also reduced upon the incorporation of counter‐ions. To complement the studies, selectivity (i.e., proton conductivity/methanol permeability) of the studied membranes was determined and compared to Nafion® 117. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
This article investigates the comprehensive properties of sulfonated poly(phenylene oxide) (SPPO) membranes with different sulfonation degrees and presents the completion of previous work necessary for the application of SPPO membranes to proton‐exchange membrane fuel cells. The sulfonation level has been accurately determined by conductometric titration and 1H‐NMR, and the glass‐transition temperature has been obtained with both differential scanning calorimetry and dynamic mechanical thermal analysis. Sulfonic groups attached to the aromatic ring in the poly(phenylene oxide) backbone split at 220–340°C, but the main‐chain splitting temperature of SPPO is similar to that of the pure polymer. In addition, the effects of sulfonic groups and water on the tensile strength of these membranes have been studied. An increase in the sulfonate groups in the polymer results in an increase in the water uptake. Atomic force microscopy phase images of the acid‐form membranes clearly show the hydrophilic domains, and the ionic regions of the membranes with a low sulfonation degree are isolated and become connected to produce a cocontinuous morphology as the degree of sulfonation increases. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1244–1250, 2005  相似文献   

14.
Immobilization of reduced graphene oxide (RGO)–Bi2WO6 is an ideal method for obtaining antifouling membranes for membrane distillation (MD) processes. Poly(vinylidene fluoride) membranes modified with RGO–Bi2WO6 were successfully obtained with a double‐layer coating method through non‐solvent‐induced phase separation. The water contact angle was improved by about 30° by RGO–Bi2WO6; this indicated that the surface modification obviously increased the membrane hydrophobicity. The high desalination rate proved that all of the prepared membranes were appropriate for the MD process. The RGO–Bi2WO6‐modified membranes achieve 26.26%–59.95% removal rates in 10 mg/L aqueous ciprofloxacin under visible light for 7.5 h. It was possible to erase strongly bound foulants and recover the prepared membrane's permeation flux by 3 h of visible‐light irradiation. The RGO–Bi2WO6‐modified membrane with a high hydrophobicity, fouling mitigation, and photocatalytic capability presents huge potential for the treatment of high‐salt antibiotic wastewater use in the MD process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45426.  相似文献   

15.
Poly(l ‐lactic acid) (PLLA) composite membranes were fabricated by nonsolvent induced phase separation method using polyaniline (PANI) as an additive. Membrane structure was characterized by attenuated total reflectance Fourier transform‐infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, porosity, and pore size analysis. Membrane performance was assessed by goniometer, pure water flux, molecular weight cut‐off, static adsorption and dynamic filtration. The incorporation of PANI significantly improved the hydrophilicity and permeability of PLLA composite membrane, and eventually enhanced the antifouling performance of composite membrane compared with pure PLLA membrane. It was demonstrated that PLLA composite membrane with 1 wt % PANI had better separation and antifouling performance compared with other composite membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44452.  相似文献   

16.
The present work concerns a development of new membranes for performing ions separation. These membranes were prepared by solution casting followed by solvent evaporation, using a commercial cellulose triacetate (CTA), synthesized poly (N,N‐dimethylaminoethyl methacrylate), macrocylic polyethers (15‐crown‐5 and Dibenzo‐24‐crown‐8) as carrier and dioctylphtalate as plasticizer. Different Polymer Inclusion Membranes were characterized using physical and chemical techniques as well as Fourier transform infrared, thermogravimetric analysis, and scanning electron microscopy. Transport of lead and cadmium in aqueous solution has been studied using these systems. The selective separation of these membranes is accomplished by the presence of specific compounds, called carriers, in the membrane phase. The carriers are responsible to facilitate the transport of the target component across selective membranes. The influence of the membrane nature has been studied using some supports of different physical characteristics. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46592.  相似文献   

17.
Sulfonated poly(vinyl alcohol) (PVA) for use as a proton conductive membrane in a direct methanol fuel cell (DMFC) was prepared by reacting the PVA with sulfoacetic acid and poly(acrylic acid). The effects of the amount of sulfoacetic acid and poly(acrylic acid) on proton conductivity, methanol permeability, water uptake, and ion exchange capacity (IEC) of the sulfonated PVA membranes were investigated by using impedance analysis, gas chromatography, gravimetric analysis, and titration techniques, respectively. The water uptake of the membranes decreased with the amount of the sulfoacetic acid and the amount of poly(acrylic acid) used. The proton conductivity and the IEC values of the membranes initially increased and then decreased with the amount of the sulfoacetic acid. The methanol permeability of the sulfonated PVA membranes decreased continuously with the amount of the sulfoacetic acid. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Some of the best entities for the removal of volatile organic pollutants from water, poly(dimethyl siloxane) (PDMS) membranes from two types of initial PDMS precursors, were thoroughly investigated. In both the cases, the sizes of the initial macromonomers increased because of the crosslinking in the liquid state, and they exhibited Gaussian chain statistics, which were condensed by further crosslinking to the formation of the membranes. The structures of both the membrane types exhibited large interchain spacing on swelling; this implied a high degree of chain mobility. Their structural properties were corroborated by their separation performances. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41461.  相似文献   

19.
The effect of time on the permeation of benzene through aqueous surfactant membranes formed with two non-ionic surfactants has been studied on a batch scale under two different conditions of surfactant concentration and hydrocarbon: water ratio in the emulsions. The data have been correlated by an equation based on Casamatta's model of hydrocarbon permeation from an emulsion drop. The results indicate that the correlation can be used to treat the data until the onset of membrane rupture. The membrane thickness depends on the hydrocarbon: water ratio in the emulsion, and varies from about 1.57 to 5.10 μm.  相似文献   

20.
Membranes heavily rely on chlorination to diminish (bio)fouling, but chlorination can also lead to membrane degradation. We developed sulfonated polyaniline (S-PANI) ultrafiltration (UF) membranes with improved chlorine resistance and intrinsic antifouling properties. The S-PANI membranes were synthesized through Non-solvent Induced Phase Separation (NIPS). Membrane performance was evaluated under harsh chlorine conditions (250 ppm sodium hypochlorite for 3 days under different pH conditions). The S-PANI membranes showed improved chlorine resistance including a stable performance without changes in model foulant BSA rejection. In contrast, PANI membranes suffered critical structural damage with complete leakage and commercial PES membranes showed a 76% increase in pure water flux and a noticeable change in BSA rejection. Small changes in S-PANI membrane performance could be linked to membrane structural changes with pH, as confirmed by SEM, IR spectroscopy, and contact angle measurements. Additionally, the S-PANI membranes showed better antifouling properties with a high flux recovery ratio in comparison to PANI membranes using alginic acid, humic acid, and BSA model foulants. Chemical cleaning by sodium hypochlorite re-instated the transport properties to its initial condition. Overall, the developed S-PANI membranes have a high chlorine tolerance and enhanced antifouling properties making them promising for a range of UF membrane applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号