首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-performance polymer para-aramid (PPTA) is discovered to gel too soon during the polymerization process, resulting in poor processing performance. In this work, a homogeneous polymer solution containing heterocyclic para-aramid (HPPTA) was successfully synthesized by introducing 2,4-aminophenyl-5-aminobenzimidazole groups into the molecular chains of PPTA, and then HPPTA aerogel was prepared using a supercritical drying technique that took advantage of the HPPTA solution's excellent property of slow gelation. When the HPPTA polymer mass fraction was 1 wt%, the aerogel had the lowest density of 0.086 g cm−3 with a BET specific surface area of 376.59 m2 g−1. The HPPTA-2 aerogel had better adsorption performance for anionic dye methyl orange, with a maximum adsorption capacity of 319.47 mol g−1; however, its adsorption capacity for cationic dye methylene blue and neutral dye dimethyl yellow was very low, at only 19.68 and 0 mol g−1, respectively. The selective adsorption ability of HPPTA aerogel made it a simple and scalable platform for removing anionic dyes from water solutions. Furthermore, the HPPTA aerogel has outstanding thermal properties for thermal insulation applications in severe environments due to the synergistic effect of the 3D porous structure inside the aerogel and the exceptional thermal stability of the HPPTA.  相似文献   

2.
Aerogel fibers are thermally insulating and can be woven, so they are expected to form a new generation of smart textiles that can efficiently reduce heat consumption. However, producing continuous aerogel fibers that have the necessary strength and toughness to be woven remains a great challenge. Herein, with the aid of freeze-thaw treatment of poly(vinyl alcohol) (PVA) solution and freeze-spinning technology, continuous PVA aerogel fibers with an aligned porous morphology are prepared in a large-scale. Freeze–thaw treatment greatly contributes to improving the spinnability of the spinning dope of aerogel fibers, which leads to the formation of the continuous fibers. Remarkably, through this process the aerogel fibers achieve ultraflexible and ultrastrong features, which results in excellent weaving ability, as well as attractive mechanical properties that benefit from the cross-linking of PVA molecular chains with the aligned porous structure. More importantly, a textile woven with the special porous structure aerogel fibers shows extraordinary thermal insulation (thermal conductivity as low as 0.026 W m−1 K−1) and infrared stealth. This study illustrates a promising direction for the design of next generation, wearable, intelligent materials that have great potential for personal thermal management applications.  相似文献   

3.
A novel and environmentally friendly attapulgite-based aerogel with a three-dimensional fibrillary network structure was prepared by incorporation of nanometer-sized natural clay crystals, in this case attapulgite (ATP), into degradable poly(vinyl alcohol) (PVA), cotton cellulose nanowhisker, and melamine using only a simple blending method and subsequently a freeze-drying process. The ATP-based aerogel exhibits an abundant porosity with an average mesopore size of 8.0 nm in diameter. Compared to fragile and rigid inorganic aerogels, the as-prepared aerogel shows good flexibility and mechanical strength with a compressive strength of 9.65 × 104 Pa and 10.19 × 104 Pa at 20% and 40% of compressive strain, respectively. The limiting oxygen index (LOI) and vertical flame tests show that the resulting aerogel possesses excellent flame retardancy, with an LOI of 59.5%. Microcalorimetry test results show that the total heat release of the aerogel is as low as 5.1 KJ/g. Also, the sample shows a better thermal insulation property, with a thermal conductivity of about 0.045 W m−1 K−1 in air. Taking advantage of a simple and environmentally friendly fabrication, abundant natural clay resources, easy scalability, nearly no pollution emission in the process, and cost-efficient production, the ATP-based aerogel has great potential as ideal flame retardant and thermal insulation materials for many applications such as modern building construction or energy-efficient coatings. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47849.  相似文献   

4.
《Ceramics International》2023,49(6):9165-9172
Herein, a novel flexible SiO2 aerogel composite nanofiber membrane with strawberry-like structure and excellent thermal insulation properties, in which SiO2 aerogel particles act as thermal insulation filler, was prepared by electrospinning technology. With the addition of nano-pore structure SiO2 aerogel particles, the heat transfer path of the fibers inside the membrane became discontinuous, endowing the as-prepared membrane an ultra-low thermal conductivity of 30.3 mW/(m?K) and large surface area of 240 m2/g. Moreover, the nanofibers membrane also possesses the combined merits of excellent fire resistance, high-temperature stability, and temperature-invariant flexibility, rendering it a promising in the application of insulation and gas adsorption. The successful preparation of this flexible nanofiber membrane paves a new way to design materials with excellent thermal insulation and adsorption properties.  相似文献   

5.
Highly porous, heat resisting ceramic aerogels are considered as promising materials for high-temperature insulation. However, the general structural characteristics of ceramic aerogel, such as poor mechanical strength and transparency to infrared radiation, pose a major obstacle to their practical application. In this paper, we report a general strategy to prepare hollow mullite fiber (HMF) structures by coaxial electrostatic spinning and grow TiO2 nanorods (TiO2/NAs) in situ on HMF. The ternary composite ceramic aerogel material was prepared by filling the pores of HMF-TiO2/NAs with SiCN aerogel. The TiO2/NAs increased the fiber/aerogel interfacial bonding of the composite (0.392 MPa, 30% strain) and improved the IR transmittance (∼0%, 1200 ℃) without sacrificing their low density and thermal conductivity. In addition, low thermal conductivity (0.041 W/(m·K), 1200 °C) and excellent high-temperature insulation properties allow the composite aerogel to meet the urgent need for lightweight, high-strength, high-temperature insulation systems for spacecraft.  相似文献   

6.
Ceramic nanofiber aerogel is one of the most attractive insulation materials in recent years. However, its practical application ability is limited at high temperature due to high radiation heat transfer. Herein, we constructed a novel closed-cell/nanowire structured mullite-based nanofiber composite aerogel via electrospinning technology and solvothermal synthesis method. Hollow TiO2 spheres were used as pore-making material and infrared opacifier to reduce fiber solid heat conduction and high temperature radiation heat transfer simultaneously. In addition, TiO2 nanowires grown in-situ on the fiber surface further decrease the radiation heat transfer of aerogel and improve the mechanical properties. The unique structure endows the aerogel with high mechanical robustness (0.32–0.35 MPa, 10% strain), low density (39.2–47.5 mg/cm3) and ultralow thermal conductivity (~0.017 W m?1 K?1 at 25 ℃ and ~0.056 W m?1 K?1 at 1000 ℃). This work offers a novel strategy for the development of ceramic nanofiber aerogel at high temperature.  相似文献   

7.
Rigid polyurethane foam (RPUF) composites with triphenyl phosphate (TPhP), aluminum trihydrate (ATH), and zinc borate (ZnB) alone, as well as their binary blends, were prepared via a one-shot process. The amount of flame retardant (FR) or FR blend was varied from 10 to 50% by polyol weight percentage, and the weight fraction of the blends was also fixed at 40%. The effects of additives on thermal insulation, mechanical, and flame retardancy properties of the composites were investigated. Thermal conductivity of the neat foam (RPUF) decreased from 22.53 to 21.04–21.58 mW m−1 K−1. The compressive strength of foams displayed an increase with increasing the amount of TPhP, ATH, and ZnB till 40% by weight. The limited oxygen index values of all foams increased and the flame spread rates of all foams significantly decreased. It was also observed that the flame was self-extinguished in some cases. The cone calorimeter test results indicated that the FR additives improved the flame retardancy of the RPUF. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47611.  相似文献   

8.
《Ceramics International》2022,48(24):36287-36296
Multifunctional aerogels with high porosity and good thermal insulation have attracted much attention in the field of energy and aerospace engineering. In this work, a three-dimensional BN fiber aerogel with hierarchically porous structure was prepared through a freeze-drying combined with in-situ carbothermal reduction nitridation route. The synthesized BN fiber aerogel exhibits a specific surface area of 154.3 m2/g, a high porosity of 96.8% and hydrophobicity. Moreover, the BN fiber aerogel shows a low thermal conductivity of 0.051 W/(m·K) and excellent thermal insulation properties owing to its hierarchical porous structure. Particularly, the BN fiber aerogel still maintains its low thermal conductivity and a rather high mechanical strength after re-heated at 1473 K for 3 h in Ar atmosphere, suggesting excellent high-temperature service performance. The successfully developed multifunctional BN fiber aerogel holds promising potential in high-temperature thermal insulation fields.  相似文献   

9.
An ideal insulation material has long been envisioned as one that not only minimizes heat loss but also provides additional heat. This study presents a non-woven fabric, comprising ultra-fine fibers embedded with zirconium carbide nanoparticles (ZrC NPs), prepared via solution blow spinning (SBS) and thermal crosslinking technology. Our results suggest that the fluffily-structured elastomer, fabricated using rigid polystyrene and flexible polyurethane, exhibits high porosity (96.96%), ultra-light characteristics (volume density of 47.12 mg cm−3), and effective heat retention (thermal conductivity of 23.1 mW mK−1 at −40°C). Moreover, the fabric demonstrates remarkable fracture strength (206.38 kPa), high elongation at break (34.5%), and superior elasticity even after 100 compression cycles at 40% strain. Despite the fact that introducing 12% ZrC increases the thermal conductivity of the base fabric by 6%, the NPs endow the material with an excellent photothermal conversion function. Following 10 min of exposure to visible light, the surface temperature increases to 71.5°C. Given its impressive performance, this novel non-woven fabric demonstrates significant potential for applications in the field of cold protection.  相似文献   

10.
A poly(phenylsulfone)-urea (PPSUU) macro-activator is synthesized by in situ anionic polymerization of 4,4′-diaminodiphenylsulfone and hexamethylene diisocyanate. The PPSUU segment is embedded into the nylon molecular chain through copolymerization to improve the wear resistance and flame retardancy of monomer cast nylon 6 (MC PA6) materials. The mechanical properties, thermal stability, friction and wear properties and combustion heat release rate of copolymers with different macro-activator contents are tested. Results indicate that a small amount of PPSUU can improve the wear resistance and impact properties of nylon materials. The wear loss of MC nylon is 54.8% less than pure MC nylon from 1.049 × 10−8 to 0.474 × 10−8 g/Nm with 6 wt% PPSUU. Moreover, better flame retardancy is verified. The peak of HRR reduced 36.8% from 654 to 413 kw/m2 with 4 wt% PPSUU, accompanied by advanced ignition time and flame extinction time, thus reducing the risk of fire.  相似文献   

11.
Novel poly(methyl methacrylate) (PMMA)/silica aerogel bimodal cellular foams were prepared by melt mixing and a supercritical carbon dioxide foaming process. The effects of the silica aerogel content on the morphologies and thermal‐insulating and mechanical properties of the foams were investigated by scanning electron microscopy, mechanical tests, and heat‐transfer analysis. The experimental results show that compared to the pure PMMA foam, the PMMA/silica aerogel microcellular foams exhibited more uniform cell structures, decreased cell sizes, and increased cell densities (the densities of the foams were 0.38–0.45 g/cm3). In particular, a considerable number of original nanometric cells (ca. 50 nm) were evenly embedded in the cell walls and on the inner surfaces of the micrometric cells (<10 μm). A 62.7% decrease in the thermal conductivity (0.072 W m−1 K−1) in comparison to that of raw PMMA after 0.5 wt % silica aerogel was added was obtained. Mechanical analysis of the PMMA/silica aerogel foams with 5 and 2 wt % silica aerogel showed that the compressive and flexural strengths were distinctly improved by 92 and 52%, respectively, and the dynamic storage moduli increased. The enhanced performance showed that with the addition of silica aerogel into PMMA, one can obtain thermal‐insulation materials with a favorable mechanical strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44434.  相似文献   

12.
《Ceramics International》2022,48(22):32994-33002
Al2O3 aerogels are widely employed in heat insulation and flame retardancy because of their unique combination of low thermal conductivity and exceptional high-temperature stability. However, the mechanical properties of Al2O3 aerogel are poor, and the preparation time is considerably long. In this study, we present a simple and scalable approach to construct monolithic Pal/Al2O3 composite aerogels using solvothermal treatment instead of traditional solvent replacement, which remarkably shortened the preparation time. Subsequently, to obtain stable superhydrophobicity (θ > 152°), the Pal/Al2O3 aerogel was modified by gas-phase modification method. The obtained Pal/Al2O3 composite aerogels demonstrate the integrated properties of low density (0.078–0.106 g/cm3), low thermal conductivity (1000 °C, 0.143 W/(m·K)), good mechanical properties (Young's modulus, 1.6 MPa), and good heat resistance. The monolithic Pal/Al2O3 composite aerogels with improved mechanical performance and improved thermal stability can show great potential in the field of thermal insulation.  相似文献   

13.
Currently, the flame-retardant modification of polybutylene succinate (PBS) is mainly focused on improving flame-retardant efficiency, ignoring the negative impact of the smoke produced by combustion on the human respiratory tract. To address this problem, PBS composites were prepared by melt blending method in this study. The effect of boron nitride-grafted DOPO flame retardant (BNNS@DOPA) on flame retardancy and smoke suppression of PBS composites was investigated. Incorporating 3% BNNS@DOPA into PBS composites results in a 90% improvement in thermal conductivity. This resulted in a reduction of the peak heat release rate, total heat release rate, and actual smoke rate to 453.7 kW m−2, 86.3 MJ m−2, and 1035.9 m2, respectively, compared with pure PBS. The latter indicated a decrease of 34.0%, 37.6%, and 51.2%, respectively. Furthermore, the ignition time was extended by 45 s and the limiting oxygen index value increased by 12.5%. This functionalization approach presents a new way to study PBS flame retardancy improvement, consequently boosting its application in fire safety for polymer materials.  相似文献   

14.
Porous stainless steel hollow fiber has been widely used due to its high mechanical strength, excellent thermal conductivity and good sealing properties compared with other porous supports. We successfully prepared porous stainless steel hollow fibers using polyacrylonitrile (PAN) as polymer via dry-wet spinning followed by sintering through temperature programming method. The PAN concentration had an obvious impact on the structure and property of porous stainless steel hollow fiber even if it would be burned off during sintering. The results showed that the morphology could be tuned by adjusting the concentration of PAN. With increasing PAN concentration in casting solution for spinning, the viscosity was increased dramatically, resulting in much compact structures with high pure water flux (higher than 3×105 L·m?2·h?1·Pa?1). A more dense structure could be obtained by adding additive polyvinylpyrrolidone (PVP) as viscosity enhancer.  相似文献   

15.
Al2O3–ZrO2(CeO2) ceramic fibers have good heat insulation and high-temperature resistance. Pampas grass is a large perennial grass, or a natural fiber, with a hollow structure that can improve the heat insulation of the fiber by changing its heat transfer mode. This study introduces a method for the preparation of biomorphic Al2O3–ZrO2(CeO2) fibers with a hollow structure and a double-layer-tube structure using the pampas grass as thetemplate. Hollow ceramic fibers with good thermal insulation properties were prepared by soaking the pampas grass in ZrOCl2, Ce(NO3)3, and AlCl3 solutions before sintering them at high temperatures. When the zirconia doping ratio was 11 mol%, the biomorphic fiber with a double-layer-tube structure was prepared. The biomorphic fibers inherited the hollow structure of the pampas grass and retained the template fiber'scharacteristics of excellent continuity and a high degree of hollowness, whichdecreased the thermal conductivity of the fibers.  相似文献   

16.
High-performance thermally insulating aerogel with low density, high porosity, and low thermal conductivity characteristics was widely used in heat insulation. However, the large-scale application of aerogel was still limited by its brittleness and infrared radiation transparency at high-temperature. Fiber composite aerogel had achieved significant progress, but its anti-oxidation ability was poor, and its thermal insulation required further improvement at ultra-high temperatures. Herein, inspired by the structure of elytra, nanoparticle fiber (NF) was prepared by electrospinning of coaxial fiber loaded with opacifier and antioxidant nanoparticles. The NF was incorporated into the SiBCN aerogel to prepare NF/SiBCN ceramic fiber aerogel. The mechanical properties were improved by fiber networks. The shell structure increased the antioxidant properties. Heat conduction and heat convection were suppressed by the aerogel, while heat radiation was reduced by the coaxial fiber. The results showed that the ceramic fiber aerogel exhibited superior mechanical, antioxidant, and ultra-low thermal conductivity properties.  相似文献   

17.
A trade-off dilemma exists for simultaneously improving the mechanical properties and flame resistance of flexible polyvinyl chloride (fPVC)/magnesium hydroxide (MH) composites. In this study, epoxy phosphate ester (EPE), a hydrophobic surface modifier of MH, was synthesized using a self-emulsification method. After modification, EPE was bonded to the surface of MH (MHEPE) without altering its morphology. The results of limiting oxygen index and cone calorimetry tests indicated that fPVC/MHEPE exhibited better flame retardancy and smoke suppression effects than did fPVC/MH. The peak of the heat release rate, total heat release, peak of the smoke production rate, and total smoke production of the fPVC/MHEPE composite were 206.0 kJ m−2, 45.90 MJ m−2, 0.0729 m2 s−1, and 9.88 m2, which were 8.64%, 14.00%, 27.61%, and 9.02% lower than those of the fPVC/MH composite, respectively. For the fPVC/MHEPE composite, a compact and continuous char residue formed, which could inhibit heat and flammable volatile migration between the matrix and burning zones. In the gas phase, the dilution effect of H2O vapor reduced the concentrations of O2 and flammable volatiles. The free-radical quenching effect of ·PO and ·PO2 also played a vital role in extinguishing flame and terminating combustion. Further, the introduction of EPE improved the tensile and impact strengths of the fPVC/MH composites because of the excellent interfacial compatibility between MHEPE and the fPVC matrix. This study provides a simple and workable solution for the trade-off dilemma, and the remarkable flame retardancy and mechanical properties of the fPVC/MHEPE composite render it a promising cable material.  相似文献   

18.
Glass fiber/polyimide aerogel composites are prepared by adding glass fiber mat to a polyimide sol derived from diamine, 4,4′‐oxydianiline, p‐phenylene diamine, and dianhydride, 3,3′,4,4′‐biphenyltetracarboxylic dianhydride. The fiber felt acts as a skeleton for support and shaping, reduces aerogel shrinkage during the preparation process, and improves the mechanical strength and thermal stability of the composite materials. These composites possess a mesoporous structure with densities as low as 0.143–0.177 g cm?3, with the glass fiber functioning to improve the overall mechanical properties of the polyimide aerogel, which results in its Young's modulus increasing from 42.7 to 113.5 MPa. These composites are found to retain their structure after heating at 500 °C, in contrast to pure aerogels which decompose into shrunken ball‐like structures. These composites maintain their thermal stability in air and N2 atmospheres, exhibiting a low thermal conductivity range of 0.023 to 0.029 W m?1 K?1 at room temperature and 0.057to 0.082 W m?1 K?1 at 500 °C. The high mechanical strengths, excellent thermal stabilities, and low thermal conductivities of these aerogel composites should ensure that they are potentially useful materials for insulation applications at high temperature.  相似文献   

19.
以热塑性聚氨酯中空纤维为增韧材料,正硅酸乙酯为硅源,采用溶胶-凝胶技术制备了热塑性聚氨酯中空纤维/SiO2气凝胶隔热材料.考察了纤维类型、中空纤维铺设方式、中空纤维规格对SiO2气凝胶隔热性能的影响.结果表明:中空纤维增韧SiO2气凝胶的隔热性能略低于纯SiO2气凝胶,但其韧性有了显著提高.中空纤维垂直铺设,采用合适的内径及壁厚的中空纤维能获得较好隔热性能的SiO2气凝胶隔热材料.  相似文献   

20.
Up to date, preparation of thermo-responsive mixed-matrix membranes (MMM) has only be described as small scale flat membranes or multi-step processes for hollow fiber membranes. In this work, the development of thermo-responsive MMM hollow fibers composed of polyethersulfone as membrane polymer and poly(N-isopropylacrylamide) (PNIPAM) microgel particles via the wet spinning process is presented. PNIPAM particles are synthesized with (NP-S, zavg 20°C = 105 nm) and without (NP-L, zavg 20°C = 250 nm) sodium dodecyl sulfate and their thermo-responsive behavior is characterized by dynamic light scattering. Particle size (NP-S, NP-L), particle content (10%, 15%) and the extrusion pressure in the wet spinning process (1.0–3.0 bar) are investigated as experimental parameters. Reversible thermo-responsive behavior of the hollow fibers is demonstrated by water permeability measurements at different temperatures (20 and 50°C). The largest switching factors (R) are observed for the hollow fibers containing NP-L. For 15% NP-L and 1 bar extrusion pressure, water permeances between 0.5 and 6.0 L m−2 h−1 bar−1 are observed, corresponding to R = 12 and a dextran (500 kDa) rejection of 91% at 25°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号