首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
在对压裂返排液污染物的组成及来源分析的基础上,对目前国内外以生物处理为核心的压裂返排液处理工艺进行了归纳,综述了活性污泥法、好氧颗粒污泥法和生物膜法等处理压裂返排液的研究进展;指出高盐度和返排液中存在的部分难降解及有毒有机物是制约生物法处理压裂返排液的关键因素;并提出未来压裂返排液处理的研究方向,为压裂返排液处理技术的研发提供思路和参考。  相似文献   

2.
随着石油产量的增加,水力压裂过程中产生的压裂返排液造成的环境污染也越来越严重。因此,油田公司对压裂返排液的处理不容忽视。本文对国内外的压裂返排液处理方法进行了综合调研,详细介绍了压裂返排液的各种处理技术,并展望了压裂返排液处理技术的发展方向,为油田压裂返排液处理技术的进一步提升提供参考。  相似文献   

3.
总结了近年来对压裂返排液的主要处理方法,指出了压裂返排液在处理中存在的问题,并对优化处理以降低处理成本和减少对环境产生的危害进行了展望。  相似文献   

4.
油田开采的后期阶段,往往采取酸化和压裂技术提升开采量,酸化和压裂返排液对环境和水体造成危害,需要进行处理。本文对酸化和压裂返排液的危害进行介绍,并对废液废水处理的常用方法进行概述,结合酸化和压裂返排液的特点,介绍了其处理工艺和方法。  相似文献   

5.
王佳  王鹏程  路建萍  沈燕宾  李俊华 《应用化工》2022,(5):1527-1529+1534
对返排液水质进行分析,研究了影响返排液回用的影响因素,压裂返排液处理剂配方为:0.15%高效络合剂+0.1%屏蔽剂+0.1%杀菌灭藻剂。处理后压裂返排液回用的压裂液体系为:0.35%瓜胶+0.35%多效压裂助剂+0.01%专用螯合剂;交联液为低用量多核交联剂+断裂催化剂。结果表明,优化的压裂返排液回用体系具有良好的耐温抗剪切,静态滤失、破胶性能和配伍性。同时形成了配套的回用工艺,采用“破胶降粘-除油-絮凝沉淀过滤-脱硼处理-成分调节”五个工序对压裂液返排液进行处理,实现了压裂返排液的重复再利用。  相似文献   

6.
为了充分利用水资源,压裂返排液多在处理后回注。为了确保回注效果,需要进行处理后压裂返排液的回注可行性评价。采用化学氧化与絮凝处理方式对压裂返排液进行了处理,通过对水质离子含量、混合水结垢量及配伍性、黏土膨胀率、储层伤害率的分析研究,对其回注可行性进行了评价。结果表明:压裂返排液经过"氧化-絮凝"处理后,压裂返排液的悬浮物质量浓度为1.6 mg/L、含油量低于1.0 mg/L,黏土在处理后压裂返排液中的防膨率为92.68%;处理后压裂返排液与储层产出水混合体积比为3∶7时,结垢量低于72 mg/L;当处理后水含油量、悬浮物质量浓度低于6.00 mg/L时,对储层渗透率的伤害率低于20%。  相似文献   

7.
针对油田压裂返排液化学试剂含量高、组分复杂、处理难度大的特点,综述了近年来物理法、化学法、生化法、组合法等压裂返排液处理工艺的研究进展,分析了各种处理工艺的优缺点,并对压裂返排液处理工艺的发展方向进行了展望,认为采用组合法处理油田压裂返排液,并对其进行资源化回收利用是压裂返排液处理工艺的发展趋势。  相似文献   

8.
油田压裂返排液处理工艺对油田开采非常重要,一定程度上关系到油田开采效率。油田压裂过程是油田开采中的重要步骤,返排液问题是影响石油开采的重要问题,容易对过滤装置以及过滤膜造成一定的损害,从而影响到油田的开采效果。对油田压裂返排液处理技术进行了分析研究,简要阐述了油田压裂返排液的主要影响,并对当前常用的油田压裂返排液处理技术进行了总结,同时以XX油田返排液处理为例,提出了其处理要点。  相似文献   

9.
通过对三叠系压裂返排液的取样化验,分析返排液组分,优化调整处理剂的组分对返排液进行处理,利用处理液进行压裂液试调配,形成适合三叠系返排液特征的水处理添加剂配方并优选与之相配的压裂液体系,达到压裂返排液的重复再利用。  相似文献   

10.
压裂酸化作业是开发非常规油气藏与低渗透率油气藏、解决堵塞问题的主要手段,而压裂返排液当中含有许多污染物,腐蚀性强,如果未经有效处理就排放的话会造成土壤酸化、产生硫化氢等有毒气体,配制醋酸还会产生刺激性很强的蒸汽,对直接接触的动植物造成严重烧伤,严重污染环境。因此,必须按照相关规定和标准对返排液进行处理。本文将从压裂返排液的相关性质、特点及主要处理方法入手进行分析,进而探究其在压裂酸化作业当中的应用。  相似文献   

11.
针对压裂返排液污染物成分复杂、含量高,对环境污染严重的特点,采用小球藻好氧处理结合聚合氯化铝(PAC)混凝、颗粒污泥厌氧处理压裂返排液结果表明,压裂返排液可生化性差,小球藻直接处理返排液COD去除率仅为5.85%,返排液培养小球藻96 h后藻株进入对数期增殖,最大藻密度为1.19 g/L。混凝处理可以有效去除返排液中有机物污染物,混凝出水培养小球藻72 h后藻株进入对数期增殖,最大藻密度为1.03 g/L,返排液经混凝、小球藻处理后COD去除率为68.63%。颗粒污泥厌氧处理可以进一步去除返排液混凝出水有机污染物,厌氧出水培养小球藻24 h后藻株快速增殖,最大藻密度为0.35 g/L,返排液经混凝、厌氧和小球藻处理后,COD去除率可达92.16%。  相似文献   

12.
采用电絮凝技术对页岩气压裂返排液进行处理,考察了各操作条件对页岩气压裂返排液处理效果的影响,确定了电絮凝处理的最佳实验条件:阴阳极材料均为铝板,电流密度10.0 m A/cm2,极板间距3 cm,反应时间60 min,p H=7。电絮凝工艺对低浓度页岩气压裂返排液具有较良好的处理效果,可望成为页岩气压裂返排液达标排放组合工艺的重要单元。  相似文献   

13.
针对目前压裂返排液处理技术步骤繁琐、处理周期长、设备占地大、无法即返排即处理等问题,基于对压裂返排液水质及主要组分的分析结果,确定以去除有机物(COD)为首要目标,建立了絮凝预处理+电化学/高级氧化/超声耦合高效处理的两步处理方法。通过实验优化出最佳操作条件,使返排液经处理后水质澄清透明,COD、固体悬浮物及含油量均达到规定要求。在此基础上初步设计了处理工艺流程及撬装设备,可实现压裂返排液的边返排边连续在线处理,具有工业化应用前景。  相似文献   

14.
屈海清 《云南化工》2019,(4):154-155
在页岩气的开发过程中,对页岩气压裂返排液进行无害化处理具有一定的难度。主要分析了页岩气压裂排液中影响回用的主要成分,根据实验对比研究了影响压裂排液回用的主要原因,同时也介绍了页岩气压裂返排液回用所用的处理技术和利用这种处理技术组成的装置应用。  相似文献   

15.
水力压裂技术是目前页岩气开发的主要储层改造手段,水力压裂所需水量大,返排液的总返排量大、高矿化度、高COD且返排周期长,为降低对环境的污染,返排液必须经处理再排放。根据涪陵页岩气开发压裂废水情况,本研究以"前期回用-后期排放"为方向。在开发阶段压裂返排液和采气分离水经"pH值调节/预氧化-混凝"处理在工区内重复利用,开发结束后不再利用的压裂返排液和采气废水经"pH值调节/预氧化-混凝-高级氧化-反渗透-浓水处理"深度处理后达标排放。前期回用处理采用罐装车设备,后期排放处理以罐装车与深度处理的撬装装置联用,整套设备适应性强、可重复利用且方便移动。  相似文献   

16.
大型体积压裂工艺是高效开収页岩气的重要技术措施,需要大量的地表水配制压裂液,同时压裂后返排会产生大量返排液,增大了地表水拉运用以及返排液处理的费用。因此,返排液处理回收再利用成为了目前页岩气压裂工艺的重要措施。分析了四川威进及长宁区块页岩气压裂液返排液组分,幵利用单因素分析方法评价页岩气返排液中组分对压裂液性能的影响,最后利用样品处理实验,确定了采用电絮凝+过滤+除阳离子试剂方法对返排液迚行处理,处理后的返排液达到了再次利用的标准,实现了降本增效的目的,保障了页岩气开収的可持续収展。  相似文献   

17.
压裂返排液中不仅含有大量化学添加剂,在返排过程中还将地层中的有机和无机化合物、细菌、重金属以及放射性元素携带出来,与其他油气田污水相比具有污染物种类繁多、成分复杂、浓度高、粘度大、COD高、矿化度高、稳定性高等特点。利用催化反应技术打破压裂返排液化学键,降低其稳定性,配合常规化学处理方法解决压裂返排液处理难等问题,达到回注目的。  相似文献   

18.
刘磊 《云南化工》2018,(3):184-185
在开采油田中会出现不少废液和废物,而废液和废物在修井和钻井中又会产生添加剂、无机物和固体悬浮物,一方面在处理上有一定的难度,另一方面会对环境造成污染。在我国健康生态文明的目标下,必须要加强研究无害处处理油田压裂返排液的技术,实现合理利用资源,保护环境的目的。文章主要介绍了油田压裂返排液的主要成分和特征,介绍了压裂返排液的常用处理方法,并探究无害化处理压裂返排液的新技术。  相似文献   

19.
油田压裂返排液具有高黏度、高浊度、高COD、高稳定性的特点,采用单一工艺技术无法实现达标处理。针对此,文章综述了目前油田压裂返排液组合深度处理工艺,分析并指出了各组合工艺的技术特点、适用条件及存在问题,并展望了未来压裂返排液处理技术的潜在发展方向。  相似文献   

20.
针对林区油井水力压裂改造规模的扩大,试油压裂产生的废水大量增加,传统方法处理废水成本高,环保压力大问题。采用液体回收处理再利用技术让压裂返排液和抽汲液体经过回收装置和添加剂处理后,实现同一口井和相邻井间返排液的回收再压裂利用。现场应用表明,回收液体利用率达到90%以上,单口水平井节约用水24.86%,单口直井节约用水最高可达50%,为今后压裂返排液利用提供了可靠的技术保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号