首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-oxide ceramic matrix composites (CMC) based on SiC fibers with SiC matrix were fabricated by polymer infiltration and pyrolysis (PIP) and characterized regarding their microstructural features and their mechanical properties. The fiber preform was made using winding technology. During the winding process, the SiC fiber roving was impregnated by a slurry containing SiC powder and sintering additives (Y2O3, Al2O3 and SiO2). This already helped to achieve a partial matrix formation during the preform fabrication. In this way, the number of PIP cycles to achieve composites with less than 10% open porosity could be reduced significantly. Additionally, damage-tolerant properties of the composites were obtained by an optimal design of the matrix properties although only uncoated fibers were used. Finally, composites with a strength level of about 500 MPa and a damage-tolerant fracture behavior with about 0.4% strain to failure were obtained.  相似文献   

2.
A simple and effective slurry injection method for producing dense and uniform ultra-high ceramic matrix composites from preforms of high fibre density was developed. As this method is based on slurry injection the homogeneity is not constrained to small preform sizes; dense components of high fibre volume can be produced in theoretically any size and shape. Samples produced by this method demonstrated high and consistent densities, with the injection method obtaining densities an average 27% higher and 87% lower in variability when compared to conventional vacuum impregnation. Tomography demonstrated no bias in the ceramic powder distribution for samples produced by injection, whereas samples produced by vacuum impregnation alone displayed poor powder penetration to the centre of large samples. The new approach yielded composites that were as strong and/or more consistent in strength compared to vacuum impregnation. Thermo-ablative testing demonstrated significant improvements in protective capability for materials produced by this route.  相似文献   

3.
The electrical properties of carbon/carbon (C/C) and carbon/carbon-silicon carbide (C/C-SiC) ceramic composites were measured. The results show that the capacitance decreases rapidly with an increase in frequency and it becomes constant above a frequency of 500 kHz, whereas the dissipation factor increases with increasing frequency. C/C-SiC composites give higher value than C/C composites due to the presence of microcracks.  相似文献   

4.
Ceramic matrix composites have the potential to operate at high temperatures and are, therefore being considered for a variety of advanced energy technologies such as combustor liners in land-based gas turbo/generators, heat exchangers and advanced fission and fusion reactors. Ceramic matrix composites exhibit a range of crack growth mechanisms driven by a range of environmental and nuclear conditions. The crack growth mechanisms include: (1) fiber relaxation by thermal (FR) and irradiation (FIR) processes, (2) fiber stress-rupture (SR), (3) interface removal (IR) by oxidation, and (4) oxidation embrittlement (OE) resulting from glass formation including effects of glass viscosity. Analysis of these crack growth processes has been accomplished with a combination experimental/modeling effort. Dynamic, high-temperature, in situ crack growth measurements have been made in variable Ar + O2 environments while a Pacific Northwest National Laboratory (PNNL) developed model has been used to extrapolate this data and to add radiation effects. In addition to the modeling effort, a map showing these mechanisms as a function of environmental parameters was developed. This mechanism map is an effective tool for identifying operating regimes and predicting behavior. The process used to develop the crack growth mechanism map was to: (1) hypothesize and experimentally verify the operative mechanisms, (2) develop an analytical model for each mechanism, and (3) define the operating regime and boundary conditions for each mechanism. A map for SiC/SiC composites has been developed for chemical and nuclear environments as a function of temperature and time.  相似文献   

5.
The grinding performance of unidirectional carbon fibre reinforced silicon carbide ceramic matrix composites (Cf/SiC) was investigated in this paper. The effects of the fibre orientation and grinding depth on the surface integrity and grinding forces and an understanding of the grinding mechanisms are the primary concerns of this article. This problem is relatively unexplored; therefore, the main value of this research is to improve the processing quality and reduce the production cost. In the Cf/SiC grinding procedure, cracks, fibre wear, interfacial debonding, fibre pull-out and outcrop can be detected on the ground surface. The grinding depth and deflection angle have been shown to have a notable influence on the surface quality in different datum planes. A suitable grinding depth and deflection angle should be carefully chosen to achieve good surface quality in different machined surfaces. Specifically, the surface quality decreases and the grinding forces increase with increasing grinding depth. In addition, greater grinding surface quality is observed at β?=?90°, i.e., γ?=?0°, but poorer machined surfaces are obtained at α?=?0°, i.e., γ?=?90°. The surface topography, roughness and grinding forces of unidirectional Cf/SiC could be forecasted according to the analysis conclusions. This research is expected to offer guidelines for increasing the machining quality of Cf/SiC.  相似文献   

6.
In this work, a three-dimensional viscoplasticity formulation with progressive damage is developed and used to investigate the complex time-dependent constituent load transfer and progressive damage behavior in ceramic matrix composites (CMCs) subjected to creep. The viscoplasticity formulation is based on Hill's orthotropic plastic potential, an associative flow rule, and the Norton-Bailey creep power law with Arrhenius temperature dependence. A fracture mechanics-informed isotropic matrix damage model is used to account for CMC brittle matrix damage initiation and propagation, in which two scalar damage variables capture the effects of matrix porosity as well as matrix property degradation due to matrix crack initiation and propagation. The Curtin progressive fiber damage model is utilized to simulate progressive fiber failure. The creep-damage formulation is subsequently implemented as a constitutive model in the generalized method of cells (GMC) micromechanics formulation to simulate time-dependent deformation and material damage under creep loading conditions. The developed framework is used to simulate creep of single fiber SiC/SiC microcomposites. Simulation results are in excellent agreement with experimental and numerical data available in the literature.  相似文献   

7.
The evolution of matrix cracks in a melt‐infiltrated SiC/SiC ceramic matrix composite (CMC) under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. CMC modeling and life prediction strongly depend a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time‐temperature‐environment‐stress), and the interactions of matrix cracks with fibers and interfaces. In this work, strain relaxation due to matrix cracking, the relationship between CODs and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross‐section. This calls into question the modeling assumption of through‐cracks for all loading conditions and fiber architectures, which can obscure oxidation mechanisms that are active in realistic cracking conditions. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMCs at stresses well below the proportional limit.  相似文献   

8.
9.
《应用陶瓷进展》2013,112(6):286-290
Abstract

Stoichiometric MXO4 type compounds, where M represents a rare earth or yttrium ion and X a pentavalent cation, have been prepared using mixed oxide and liquid precursor methods. Their stability in relation to Al2O3, mullite, and yttrium–aluminium garnet (YAG) has been determined by examining interfaces exposed in reaction couples after heating to 1400°C. Complex oxides of the phosphate and vanadate type are shown to possess the desired chemical stability with some of the candidate oxides and can be considered as suitable interphase materials. Close control over composition and homogeneity is shown to be important in determining their performance as potential interphases due to the possible formation of a liquid phase which can react readily with the oxide matrix or fibre. Selected MXO4 compounds have also been successfully deposited on to oxide substrates and woven oxide fibres using liquid precursors and RF magnetron sputtering techniques, yielding controlled and uniform fibre coatings.  相似文献   

10.
This study presents a fabrication method and identifies processing bounds for additively manufacturing (AM) ceramic matrix composites (CMCs), comprising a silicon oxycarbide (SiOC) ceramic matrix. A digital light projection printer was used to photopolymerize a siloxane-based preceramic resin containing inert ceramic reinforcement. A subsequent pyrolysis converted the preceramic polymer to SiOC. Particle reinforcements of 0 to 40% by volume in the green state were uniformly dispersed in the printed samples to study their effects on pyrolysis mass loss and shrinkage, and CMC notch sensitivity and strength. Both particle and whisker reinforcements toughened the glassy SiOC matrix (1 MPa m1/2), reaching values >3 MPa m1/2. Bending strengths of >300 MPa (>150 MPa (g cm−3)−1) and a Weibull modulus of 10 were measured on AM samples without surface finish. We identified two pore formation mechanisms that placed processing bounds on sample size and reinforcement volume fraction. Methods for increasing these bounds are discussed. With properties commensurate to traditionally processed technical ceramics, the presented process allows for free-form fabrication of high-performance AM CMC components.  相似文献   

11.
Long-term thermal aging is a typical factor affecting the thermo-mechanical fatigue life for hot-end components in the gas turbine. The present work focuses on the development of thermal aging-induced damage in 2-D woven oxide/oxide ceramic matrix composites from micro-mechanism and macroscopic mechanical performance. The porosity evolution and mechanical performance after long-term thermal aging were characterized through mercury intrusion measurements and uniaxial compressive tests, respectively. The results show that the decrease of micro-porosity directly reflects the irreversible evolution of material microstructure in the thermal aging process, and the decrease of compressive strength after aging is the macroscopic reflection of the microstructure variation. The porosity increment of matrix was thus used to characterize the thermal aging-induced damage, establishing a unique analysis model between the increment of micro-porosity under thermal aging and the corresponding degradation of material compressive strength. The experimental results are in good agreement with the established model.  相似文献   

12.
13.
《Ceramics International》2023,49(18):29639-29646
The high coefficient of thermal expansion (CTE) of polymeric composites can cause large deformation under temperature changes, affecting coupling with devices made of other materials in radio frequency (RF) communication systems and limiting their application in RF systems. In order to obtain polyphenylene sulphide (PPS)-based composites with low CTE, a series of PPS-based composites containing different loadings of ceramic powders (including Zr2WP2O12, BN, AlN, Al2O3) were fabricated by melt extrusion method using PPS with 40 wt% glass fibre (GF) as matrix material. The experimental results showed that the PPS composites with Zr2WP2O12 (ZWP) as a filler had a lower CTE compared to the samples with other fillers at the same filler loading. The CTE of PPS/GF/ZWP steadily decreased with increasing ZWP addition. At 20 vol% ZWP loading, a 67% (about 18 ppm/°C) reduction of CTE compared to the PPS/GF was achieved. The addition of ZWP powder to PPS/GF also led to an improvement in the dielectric loss of the composite. When the ZWP content is 20 vol%, the dielectric loss of the composites is about 0.0035, which is 24.4% lower than PPS/GF. Hence, the PPS/GF/ZWP composites have great potential for applications in RF communication systems.  相似文献   

14.
The thermal shock resistance of the porous boron nitride/silicon oxynitride (BN/Si2N2O) ceramic composites were tested by the quenching‐strength method with temperature differences of 600‐1400°C. The residual flexural strength of the composites decreased with increasing temperature difference from 600°C to 900°C. This weakening in flexural strength was attributed to the formation of microcracks in the matrix caused by thermal stress damage. Afterward, as the formation of a dense oxidized layer sealed the surface and hindered further oxidation, the residual flexural strength increased with the further increase of temperature difference from 900°C to 1100°C. Finally, when the temperature differences were above 1100°C, the residual flexural strength gradually decreased with increasing temperature difference, which was attributed to the further oxidation and large thermal stress damage. And the thermal shock resistance of the porous BN/Si2N2O ceramic can be improved by the introduction of high contents of sintering aids and h‐BN.  相似文献   

15.
《Ceramics International》2023,49(2):1779-1790
A study of porous YSZ abradable sealing coating (ASC) plasma-sprayed onto SiCf/SiC ceramic matrix composites (CMC) through the compatibility of intermediate layers is reported. The multilayer Si/Yb2Si2O7/LaMgAl11O19 thermal-environmental barrier coating (T-EBC) is served as intermediate layers in consideration of its ability to protect the CMC from recession and ease the misfit of the thermal expansivity. Isothermal exposure and thermal shock tests were conducted at 1200°C and led to the decomposition of t'-ZrO2 phase to t-ZrO2 and c-ZrO2 phases in YSZ topcoat, the formation of mud-cracks throughout the entire coating structure and thermally grown oxide (SiO2), with following an Yb2Si2O7 reaction layer. The measured bond strength of the coated samples was 5.47 ± 0.85 MPa, and the fracture position mainly happened inside the CMC substrate. The Superficial Rockwell Hardness (HR15Y) considered to be an important factor in abradability increased by only 1.34% after 1200°C isothermal exposure for 100 h, showing excellent high temperature hardness stability. The abradability of the ASC was investigated by a sliding wear test, the fatigue wear mainly occurred in worn scar when encountering Si3N4 ceramic ball with high hardness and low thermal conductivity, while adhesive wear occurred when GCr15 steel ball with low hardness and high thermal conductivity are encountered.  相似文献   

16.
碳纤维增强SiC陶瓷复合材料的研究进展   总被引:7,自引:0,他引:7  
碳纤维增强SiC陶瓷基复合材料具有良好的高温力学性能,是航空航天和能源等领域新的高温结构材料研究的热点之一.本文回顾了增强体碳纤维的发展,对材料的成型制备工艺,材料的抗氧化涂层研究进展和现有的一些应用做了综述,并展望了碳纤维增强SiC陶瓷基复合材料以后的研究重点及发展前景.  相似文献   

17.
The production of complex-shaped all-oxide ceramic matrix composites (Ox-CMC) is somewhat restricted by their current processing methods, as well as by the lack of applicable joining techniques. Thus, we present a new method for joining Ox-CMCs based on the gelation of slurries with the polysaccharide polymer alginate. For this investigation, Nextel 610/alumina-zirconia composites were produced using alginate as binder and aluminum acetate as gelling agent. The joining capabilities of this technique were investigated with microstructural analyses and single-lap compression shear tests. For that, a slurry-containing alginate was used to join two composite plates at different stages of the processing: gel state, dried green body and after sintering. Joining composites plates in their gel or green state was successful as the joints showed shear strength values similar to the interlaminar shear strength of the composites plates. The quality of the joints was attributed to the interactions between the alginate chains of the composite plates and the joint. We also show that even the joining of already sintered Ox-CMCs is feasible. However, densification cracks and lower shear strength are observed for such cases.  相似文献   

18.
The degradation of SiC‐based ceramic matrix composites (CMCs) in conditions typical of gas turbine engine operation proceeds via the stress rupture of fiber bundles. The degradation is accelerated when oxygen and water invade the composite through matrix microcracks and react with fiber coatings and the fibers themselves. We review micromechanical models of the main rate‐determining phenomena involved, including the diffusion of gases and reaction products through matrix microcracks, oxidation of SiC (in both matrix and fibers) leading to the loss of stiffness and strength in exposed fibers, the formation of oxide scale on SiC fiber and along matrix crack surfaces that cause the partial closure of microcracks, and the concomitant and synergistic loss of BN fiber coatings. The micromechanical models could be formulated as time‐dependent coupled differential equations in time, which must be solved dynamically, e.g., as an iterated user‐defined material element, within a finite element simulation. A paradigm is thus established for incorporating the time‐dependent evolution of local material properties according to the local environmental and stress conditions that exist within a material, in a simulation of the damage evolution of a composite component. We exemplify the calibration of typical micromechanical degradation models using thermodynamic data for the oxidation and/or volatilization of BN and SiC by oxygen and water, mechanical test data for the rate of stress rupture of SiC fibers, and kinetic data for the processes involved in gas permeation through microcracks. We discuss approaches for validating computational simulations that include the micromechanical models of environmental degradation. A special challenge is achieving validated predictions of trends with temperature, which are expected to vary in a complex manner during use.  相似文献   

19.
To overcome the main limitation of oxide ceramic matrix composites (Ox-CMCs) regarding thermal degradation, the use of matrix doping is analyzed. Minicomposites containing Nextel 610 fibers and alumina matrices with and without MgO doping were produced. The thermal stability of the minicomposites was evaluated considering their microstructure and mechanical behavior before and after thermal exposures to 1300 °C and 1400 °C for 2 h. Before heat treatment, both composite types showed very similar microstructure and tensile strength. After heat treatment, densification, grain growth and strength loss are observed. Furthermore, the MgO dopant from the matrix diffuses into the fibers. As a result, abnormal fiber grain growth is partially suppressed and MgO-doped composites show smaller fiber grains than non-doped composites. This more refined microstructure leads to higher strength retention after the heat treatments. In summary, doping the matrix can increase the overall thermal stability without impairing the room-temperature properties of Ox-CMCs.  相似文献   

20.
In this work, a novel process named Flexible Injection Process (FIP) was developed to manufacture near-net shape oxide/oxide composites reinforced with 3D interlock fibers. This process uses a flexible membrane to apply pressure to promote transverse impregnation of the fibrous reinforcement by a slurry charged with sub-micron ceramic particles. Due to the through-thickness filtration and compaction, FIP process is much faster than typical in-plane impregnation and results in composites with lower residual porosity than those produced by traditional processes. In this study, a mathematical modeling of the impregnation in FIP was developed and compared to experimental infiltration experiments. Furthermore, ceramic matrix composites (CMCs) produced by FIP were compared to composites manufactured via an established RTM-like process. The two molding processes were compared to determine if the different flow behaviors have an impact on material densification, porosity formation, mechanical properties, and manufacturing time. CMCs produced by both methods resulted in similar microstructures, as determined by mercury intrusion porosimetry, even if FIP composites were marginally less porous. Finally, a comparison of mechanical properties resulting from the two manufacturing methods has shown a similar behavior. Thus, the main advantages of FIP molding were identified to be the shorter cycle time and the robustness of the impregnation compared to RTM-like processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号