首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a general boundary element approach for three-dimensional dynamic crack problems in transversely isotropic bodies is presented for the first time. Quarter-point and singular quarter-point elements are implemented in a quadratic isoparametric element context. The procedure is based on the subdomain technique, the displacement integral representation for elastodynamic problems and the expressions of the time-harmonic point load fundamental solution for transversely isotropic media. Numerical results corresponding to cracks under the effects of impinging waves are presented. The accuracy of the present approach for the analysis of dynamic fracture mechanics problems in transversely isotropic solids is shown by comparison of the obtained results with existing solutions.  相似文献   

2.
The boundary integral equation method is used for the solution of three‐dimensional elastostatic problems in transversely isotropic solids using closed‐form fundamental solutions. The previously published point force solutions for such solids were modified and are presented in a convenient form, especially suitable for use in the boundary integral equation method. The new presentations are used as a basis for accurate numerical computations of all Green's functions necessary in the BEM process without inaccuracy and redundant computations. The validity of the new presentation is shown through three numerical examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Summary. Crack problems in transversely isotropic solids are reexamined from a new point of view. It is shown that, when the crack is on the isotropic plane, the asymptotic forms of the elastic crack-tip fields are identical with those in orthotropic media. The equivalent inclusion method in conjunction with Eshelbys S tensor of a strongly oblate spheroid in transversely isotropic materials is used to solve penny-shaped crack problems. The stress intensity factors corresponding to uniform tension and shear are determined, respectively. Griffiths energy criterion for brittle cracking and Irwins energy release rate are discussed in the present context. Finally, the weight function for an axisymmetrically loaded penny-shaped crack is derived. It is found that the axisymmetric weight function is independent of the material constants and is identical with the isotropic case.AcknowledgementThis work was supported in part by the National Science Council of Taiwan.  相似文献   

5.
The present paper presents a boundary element analysis of penny-shaped crack problems in two joined transversely isotropic solids. The boundary element analysis is carried out by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The conventional multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of the stress intensity factors are obtained by using crack opening displacements. The numerical scheme results are verified with the closed-form solutions available in the literature for a penny-shaped crack parallel to the plane of the isotropy of a homogeneous and transversely isotropic solid of infinite extent. The new problem of a penny-shaped crack perpendicular to the interface of a transversely isotropic bi-material solid is then examined in detail. The crack surfaces are subject to the three normal tractions and the uniform shear traction. The associated stress intensity factor values are obtained and analyzed. The present results can be used for the prediction of the stability of composite structures and the hydraulic fracturing in deep rock strata and reservoir engineering.  相似文献   

6.
Summary In this paper, we investigate the problem of radial diffusion of fluids through a transversely isotropic hollow non-linearly elastic cylinder. The transversely isotropic cylinder is both sheared and stretched. We study in detail how shearing and stretching the cylinder affects the diffusion process. The influence of the anisotropy of the solid on diffusion is also determined. A comparison is made with previous work (cf. Gandhi, Rajagopal and Wineman [11]) on the radial diffusion of fluids through isotropic non-linearly elastic solids.  相似文献   

7.
In this paper, we investigate the application of the Method of Fundamental Solutions (MFS) to two classes of axisymmetric potential problems. In the first, the boundary conditions as well as the domain of the problem, are axisymmetric, and in the second, the boundary conditions are arbitrary. In both cases, the fundamental solutions of the governing equations and their normal derivatives, which are required in the formulation of the MFS, can be expressed in terms of complete elliptic integrals. The method is tested on several axisymmetric problems from the literature and is also applied to an axisymmetric free boundary problem. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
A meshless method was presented, which couples the method of fundamental solutions (MFS) with radial basis functions (RBFs) and the analog equation method (AEM), to solve nonlinear problems. In this method, the AEM is used to convert the nonlinear governing equation into a corresponding linear inhomogeneous equation, so that a simpler fundamental solution can be employed. Then, the RBFs and the MFS are, respectively, used to construct the expressions of particular and homogeneous solution parts of the substitute equation, from which the approximate solution of the original problem and its derivatives involved in the governing equation are represented via the unknown coefficients. After satisfying all equations of the original problem at collocation points, a nonlinear system of equations can be obtained to determine all unknowns. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

9.
We investigate the use of the Method of Fundamental Solutions (MFS) for solving inhomogeneous harmonic and biharmonic problems. These are transformed to homogeneous problems by subtracting a particular solution of the governing equation. This particular solution is taken to be a Newton potential and the resulting homogeneous problem is solved using the MFS. The numerical calculations indicate that accurate results can be obtained with relatively few degrees of freedom. Two methods for the special case where the inhomogeneous term is harmonic are also examined.  相似文献   

10.
Making use of the Displacement Discontinuity Boundary Integral Equation Method (DDBIEM), the dimension of the plastic zone at the tip of a penny-shaped crack in a three-dimensional elastic medium is determined by the application of the Dugdale model; Furthermore, the solutions for a penny-shaped crack in three-dimensional piezoelectric media are obtained by the use of the Dugdale-like model proposed by Gao et al.[Gao H, Zhang T, Tong P. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 1997;45:491–510], in which the electrical polarization is assumed to reach a saturation limit in a thin annular region in front of a crack while the mechanical stresses have the ordinary singularity.  相似文献   

11.
In this paper a boundary element formulation for three-dimensional crack problems in transversely isotropic bodies is presented. Quarter-point and singular quarter-point elements are implemented in a quadratic isoparametric element context. The point load fundamental solution for transversely isotropic media is implemented. Numerical solutions to several three-dimensional crack problems are obtained. The accuracy and robustness of the present approach for the analysis of fracture mechanics problems in transversely isotropic bodies are shown by comparison of some of the results obtained with existing analytical solutions. The approach is shown to be a simple and useful tool for the evaluation of stress intensity factors in transversely isotropic media.  相似文献   

12.
The purpose of this paper is to consider the concept of a ring of sources or forces using the integral transform techniques to derive the axisymmetric fundamental solution for nonhomogeneous transversely isotropic elastic media. Firstly, the formulation of the problem in homogeneous media to derive the fundamental solutions is shown. In the case of a nonhomogeneous medium, the shear modulus of the material varies with the z-coordinate exponentially.  相似文献   

13.
The method of fundamental solutions is a meshless method. Only boundary collocation points are needed during the whole solution process. It has the merits of mathematical simplicity, ease of programming, high solution accuracy, and others. In this paper, the method of fundamental solutions is applied to simulate 2D steady-state groundwater flow problems. The principle of superposition is used during the whole solution process. Numerical results are compared with the multiquadrics method and the mixed finite element method as well as analytical solutions. It is shown that the method of fundamental solutions is promising in dealing with steady groundwater flow problems.  相似文献   

14.
In this paper, free surface problems of Stefan-type for the parabolic heat equation are investigated using the method of fundamental solutions. The additional measurement necessary to determine the free surface could be a boundary temperature, a heat flux or an energy measurement. Both one- and two-phase flows are investigated. Numerical results are presented and discussed.  相似文献   

15.
16.
A new fundamental solutions method for the numerical solution of two-dimensional biharmonic problems is described. In this method, which is based on the Almansi representation of a biharmonic function in the plane, the approximate solution is expressed in terms of fundamental solutions of Laplace's equation, and is determined by a least squares fit of the boundary conditions. The results of numerical experiments which demonstrate the efficacy of the method are presented.  相似文献   

17.
The development of the method of fundamental solutions (MFS) and related methods for the numerical solution of scattering and radiation problems in fluids and solids is described and reviewed. A brief review of the developments and applications in all areas of the MFS over the last five years is also given. Future possible areas of applications in fields related to scattering and radiation problems are identified.  相似文献   

18.
19.
A numerical scheme based on the method of fundamental solutions is proposed for the solution of two-dimensional boundary inverse Stokes problems, which involve over-specified or under-specified boundary conditions. The coefficients of the fundamental solutions for the inverse problems are determined by properly selecting the number of collocation points using all the known boundary values of the field variables. The boundary points of the inverse problems are collocated using the Stokeslet as the source points. Validation results obtained for two test cases of inverse Stokes flow in a circular cavity, without involving any iterative procedure, indicate the proposed method is able to predict results close to the analytical solutions. The effects of the number and the radius of the source points on the accuracy of numerical predictions have also been investigated. The capability of the method is demonstrated by solving different types of inverse problems obtained by assuming mixed combinations of field variables on varying number of under- and over-specified boundary segments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号