首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of B2O3/CuO and BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of Ba2Ti9O20 ceramics were investigated. The B2O3 added Ba2Ti9O20 ceramics were not able to be sintered below 1000 °C. However, when both CuO and B2O3 were added, they were sintered below 900 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the Ba2Ti9O20 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the Ba2Ti9O20 ceramics. Good microwave dielectric properties of Qxf = 16,000 GHz, ɛr = 36.0 and τf = 9.11 ppm/°C were obtained for the Ba2Ti9O20 ceramics containing 10.0 mol% BaCu(B2O5) sintered at 875 °C for 2 h.  相似文献   

2.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ɛr), high quality factor (Q × f) and small temperature coefficient of resonant frequency (τf) are required for the application of chip passive components in the wireless communication technologies. In the present study, the sintering behaviors and dielectric properties of Ba3Ti4Nb4O21 ceramics were investigated as a function of B2O3–CuO content. Ba3Ti4Nb4O21 ceramics with B2O3 or CuO addition could be sintered above 1100 °C. However, the additions of both B2O3 and CuO successfully reduced the sintering temperature of Ba3Ti4Nb4O21 ceramics from 1350 to 900 °C without detriment to the microwave dielectric properties. From the X-ray diffraction (XRD) studies, the sintering behaviors and the microwave dielectric properties of low-fired Ba3Ti4Nb4O21 ceramics were examined and discussed in the formation of the secondary phases. The Ba3Ti4Nb4O21 sample with 1 wt% B2O3 and 3 wt% CuO addition, sintered at 900 °C for 2 h, had the good dielectric properties: ɛr = 65, Q × f = 16,000 GHz and τf = 101 ppm/°C.  相似文献   

3.
The microwave dielectric properties of LiNb3O8 ceramics were investigated as a function of the sintering temperature and the amount of TiO2 additive. LiNb3O8 ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a dielectric constant (ɛr) of 34, a quality factor (Q × f0) of 58,000 GHz and a temperature coefficient of resonance frequency (τf) of −96 ppm/°C, respectively. The density of the samples influenced the properties of these properties. As the TiO2 content increased in the LiNb3O8–TiO2 system, ɛr and τf of the material were increased due to the mixing effect of TiO2 phase, which has higher dielectric constant and larger positive τf. The 0.65LiNb3O8–0.35TiO2 ceramics showed a dielectric constant ɛr of 46.2, a quality factor (Q × f0) of 5800 GHz and a temperature coefficient of resonance frequency τf of near to 0 ppm/°C.  相似文献   

4.
The effects of Bi2O3 addition on the microwave dielectric properties and the microstructures of Nb2O5-Zn0.95Mg0.05TiO3 + 0.25TiO2 (Nb-ZMT′) ceramics prepared by conventional solid-state routes have been investigated. The results of X-ray diffraction (XRD) indicate the presence of four crystalline phases, ZnTiO3, TiO2, Bi2Ti2O7, and (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 in the sintered ceramics, depending upon the amount of Bi2O3 addition. In addition, in order to confirm the existence of (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 phase in the samples, the microstructure of Nb-ZMT′ ceramic with 5 wt.% B2O3 addition was analyzed by using a transmission electron micrograph. The dielectric constant of Nb-ZMT′ samples was higher than ZMT′ ceramics. The Nb-ZMT′ ceramic with 5 wt.% Bi2O3 addition exhibits the optimum dielectric properties: Q × f = 12,000 GHz, ?r = 30, and τf = ?12 ppm/°C. Unlike the ZMT′ ceramic sintered at 900 °C, the Nb-ZMT′ ceramics show higher Q value and dielectric constant. Moreover, there is no Zn2TiO4 existence at 960 °C sintering. To understand the co-sinterability between silver electrodes and the Nb-ZMT′ dielectrics, the multilayer samples are prepared by multilayer thick film processing. The co-sinterability (900 °C) between silver electrode and Nb-ZMT′ dielectric are well compatible, because there are no cracks, delaminations, and deformations in multilayer specimens.  相似文献   

5.
The sintering behaviors and microwave dielectric properties of the Ca0.4Li0.3Sm0.05Nd0.25TiO3 (abbreviated CLSNT) ceramics with different amounts of BaCu(B2O5) addition were investigated in this paper. Adding BaCu(B2O5) to CLSNT lowered its sintering temperature from 1300 °C to 925 °C. No secondary phase was observed in the CLSNT ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLSNT ceramics with small amounts of BaCu(B2O5) addition could be well sintered at 925 °C without much degradation in the microwave dielectric properties. Especially, the 1.75 wt.% BaCu(B2O5)-doped CLSNT ceramic sample sintered at 925 °C for 3 h had optimum microwave dielectric properties of εr = 93.5 ± 3.2, Q × f = 6486 ± 434 GHz, and τf = 5 ± 1.5 ppm/°C (at 3–4 GHz), enabling it a promising candidate material for LTCC applications. Obviously, BaCu(B2O5) could be a suitable sintering aid to facilitate the densification and microwave dielectric properties of the CLSNT ceramics.  相似文献   

6.
Li2O–Nb2O5–TiO2 based ceramic systems have been the candidate materials for LTCC application, due to their high dielectric constant and Q × f value and controllable temperature coefficient in the microwave region. However, the sintering temperature was relatively higher (above 1100 °C) for practical application. In this study, dielectric properties of Li(1+xy)Nb(1−x−3y)Ti(x+4y)O3 solid solution were studied with different x and y contents and among them, the Li1.0Nb0.6Ti0.5O3 composition (x = 0.1, y = 0.1) was selected, due to its reasonable dielectric properties to determine the possibility of low temperature sintering. The effects of 0.17Li2O–0.83V2O5, as a sintering agent, on sinterability and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics were investigated as a function of the sintering agent content and sintering temperature. With addition of 0.17Li2O–0.83V2O5 above 0.5 wt%, the specimens were well densified at a relatively lower temperature of 850 °C. Only slight decrease in apparent density was observed with increasing 0.17Li2O–0.83V2O5 content above 0.75 wt%. In the case of 0.5 wt% 0.17Li2O–0.83V2O5 addition, the values of dielectric constant and Q × f reached maximum. Further addition caused inferior microstructure, resulting in degraded dielectric properties. For the specimens with 0.5 wt% 0.17Li2O–0.83V2O5 sintered at 850 °C, dielectric constant, Q × f and TCF values were 64.7, 5933 GHz and 9.4 ppm per °C, respectively.  相似文献   

7.
The anti-reduction of Ti4+ ions in Ba4.2Sm9.2Ti18O54 (BST) ceramics at high sintering temperature over 1300 °C was investigated. MgO, Al2O3 and MnO2 were added separately to suppress the reduction of Ti4+ ions so as to improve the microwave dielectric properties of BST ceramics. The microstructure of BST ceramics was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was used to study the electroconductivity of BST ceramics and valency changes of Ti ions. The results showed that MgO or Al2O3, when acting as an acceptor, could effectively suppress the reduction of Ti4+ ions and significantly improve the Q × f values of BST ceramics at the cost of dielectric constant. Meanwhile, MnO2 as an oxidant had also improved the Q × f values but with no decrease in dielectric constant. Excellent microwave dielectric properties were achieved in Ba4.2Sm9.2Ti18O54 ceramics doped with 0.2 wt.% Al2O3 sintered at 1340 °C for 3 h: ?r = 76.9, Q × f = 10,120 GHz and τf  = ?22.7 ppm/°C.  相似文献   

8.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

9.
《Ceramics International》2015,41(7):8501-8510
CdCu3Ti4O12 ceramics were successfully synthetized by the conventional solid-state reaction method. The influences of sintering parameters on phase structure, microstructure and dielectric properties were investigated systematically. CdCu3Ti4O12 ceramics sintered at 1020 °C for 15 h exhibited high temperature stability and outstanding dielectric properties, evidenced by the △CT/C25 °C ranges from −14.8% to 12.1% measured from −55 to 125 °C at 1 kHz, and the giant dielectric constant ε′=2.4×104 as well as dielectric loss tanδ=0.072. Four dielectric anomalies were evidenced in dielectric temperature spectra and the related physical mechanisms were discussed in detail. The oxygen vacancies play an important role in dielectric anomalies in the high temperature range.  相似文献   

10.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

11.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

12.
The Li2Mg1?xZnxTi3O8 (x = 0–1) and Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) ceramics are synthesized by solid-state ceramic route and the microwave dielectric properties are investigated. The Li2MgTi3O8 ceramic shows ?r = 27.2, Qu × f = 42,000 GHz, and τf = (+)3.2 ppm/°C and Li2ZnTi3O8 has ?r = 25.6, Qu × f = 72,000 GHz, and τf = (?)11.2 ppm/°C respectively when sintered at 1075 °C/4 h. The Li2Mg0.9Zn0.1Ti3O8 dielectric ceramic composition shows the best dielectric properties with ?r = 27, Qu × f = 62,000 GHz, and τf = (+)1.1 ppm/°C. The effect of Ca substitution on the structure, microstructure and microwave dielectric properties of Li2A1?xCaxTi3O8 (A = Mg, Zn and x = 0–0.2) has also been investigated. The materials reported in this paper are excellent in terms of dielectric properties and cost of production compared to commercially available high Q dielectric resonators.  相似文献   

13.
The effects of ZnB2O4 glass additions on the sintering temperature and microwave dielectric properties of Ba3Ti5Nb6O28 have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ɛr of 37.0, τf of −12 ppm/°C. It was found that the addition of ZnB2O4 glass to Ba3Ti5Nb6O28 lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases. Also the addition of ZnB2O4 glass enhanced the microwave dielectric properties: Q × f of 19,100 GHz, ɛr of 36.6, τf of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

14.
A parallel preparation method was developed using dry powders as starting materials to synthesize multi-compositional microwave dielectric ceramics. The Li2O-Nb2O5-TiO2 ternary system was investigated as a model material. The validity of the parallel ceramic preparation process was confirmed by synthesizing a group of LiNb0.6Ti0.5O3 ceramics in parallel, which showed the same crystalline structure and close dielectric properties. The ceramic libraries with M-phase-rich samples and Li2TiO3-rich samples were prepared using the parallel process, and the microwave dielectric properties and crystal phases were investigated systematically. An excellent microwave ceramic with a composition of 0.55Li2O-0.05Nb2O5-0.40TiO2 was obtained, which has a dielectric constant of 18.4 and a high quality value (Q × f) of 79000 GHz. This parallel process can be applied extensively to explore a variety of bulk ceramic libraries for discovering new functional materials with high performances.  相似文献   

15.
The effect of excess Al2O3 on the densification, structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3 (CTLA) was investigated. CTLA ceramics were prepared using the conventional mixed oxide route. Excess Al2O3 in the range of 0.1–0.5 wt% was added. It was found that Al2O3 improved the densification. A phase rich in Ca and Al was found in the microstructure of Al2O3 doped samples. Additions of Al2O3 coupled with the slow cooling after sintering improved the microwave dielectric properties. CTLA ceramics with 0.25 wt% Al2O3 cooled at 5 °C/h showed high density and a uniform grain structure with ɛr = 46, Q × f = 38,289 and τf = +12 ppm/°C at 4 GHz. XRD and TEM examinations showed the presence of (1 1 2) and (1 1 0) type twins arising from aac+ tilt system with the presence of anti-phase domain boundaries from the displacement of A-site cations of the orthorhombic perovskite structure.  相似文献   

16.
《Ceramics International》2007,33(6):951-955
The microwave dielectric properties of Sm(Zn1/2Ti1/2)O3 ceramics have been investigated. Sm(Zn1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route with various sintering temperatures and times. The prepared Sm(Zn1/2Ti1/2)O3 exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. Higher sintered density of 7.01 g/cm3 can be produced at 1310 °C for 2 h. The dielectric constant values (ɛr) of 22–31 and the Q × f values of 4700–37,000 (at 8 GHz) can be obtained when the sintering temperatures are in the range of 1250–1370 °C for 2 h. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The ɛr value of 31, Q  ×  f value of 37,000 (at 8 GHz) and τf value of −19 ppm/°C were obtained for Sm(Zn1/2Ti1/2)O3 ceramics sintered at 1310 °C for 2 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Zn1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

17.
The sintering temperature of BaSm2Ti4O12 (BST) and BaNd2Ti5O14 (BNT) ceramics was approximately 1350 °C and decreased to 875 °C with the addition of BaCu(B2O5) (BCB) ceramic powder. The presence of the liquid phase was responsible for the decrease of the sintering temperature. The liquid phase is considered to have a composition similar to the BaO-deficient BCB. The bulk density and dielectric constant (ɛr) of the specimens increased and reached saturated value with increasing BCB content. The Q-value initially increased with the addition of BCB, but decreased considerably when a large amount of BCB was added, because of the presence of the liquid phase. Good microwave dielectric properties of Q × f = 4500 GHz, ɛr = 60 and τf = −30 ppm/°C were obtained for the 16.0 mol% BCB-added BST ceramics sintered at 875 °C for 2 h. Moreover, the BST and BNT ceramics containing BCB show good compatibility with silver metal.  相似文献   

18.
The influence of B2O3–CuO addition on the sintering behavior, phase composition, microstructure and microwave dielectric properties of BiSbO4 ceramic have been investigated. The BiSbO4 ceramics can be well densified to approach above 95% theoretical density in the sintering temperature range from 840 to 960 °C as the addition amount of B2O3–CuO increases from 0.6 to 1.2 wt.%. Sintered ceramic samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microwave permittivity ?r saturated at 19–20 and Qf values varied between 33,000 and 46,000 GHz while temperature coefficient of resonant frequency shifting between ?70 and ?60 ppm/°C at sintering temperature around 930 °C. Lowering sintering temperature of BiSbO4 ceramics makes it possible for application in low temperature co-fired ceramic technology.  相似文献   

19.
The first characterization of the microwave dielectric properties of the La3Ti2TaO11 ceramics is presented. An ordinarily sintered ceramic at 1560 °C exhibits good microwave dielectric properties with ?r = 46, Q × f = 7500 GHz and τf = ?47 ppm/°C. An alternative approach to tailor the temperature coefficient of resonate frequency of La3Ti2TaO11 ceramics is also presented. Textured La3Ti2TaO11 ceramics were fabricated using spark plasma sintering (SPS). By controlling the sintering temperature, orientation degree increased together with the steadily increase in ?r and Q × f. A noteworthy change in τf from ?43.1 ppm/°C to ?13.6 ppm/°C with increasing orientation degree was observed. These results suggest that grain-orientation control was an effective way to tailor the microwave dielectric properties of La3Ti2TaO11 ceramics.  相似文献   

20.
The microstructures and microwave dielectric characteristics of complex perovskite Nd(Co1/2Ti1/2)O3 ceramics with 60P2O5–15ZnO–5La2O3–5Al2O3–5Na2O–5MgO–5Yb2O3 (PZLANMY) additions (1–4 wt%) prepared through the conventional solid-state route were investigated. It was found that Nd(Co1/2Ti1/2)O3 ceramics can be sintered at 1210 °C owing to the sintering aid of PZLANMY-glass addition. At 1300 °C, Nd(Co1/2Ti1/2)O3 ceramics with 1 wt% of PZLANMY-glass addition possess a dielectric constant (εr) of 27, a Q×f value of 64,000 GHz and a temperature coefficient of resonant frequency (τf) of ?29 ppm/°C. The PZLANMY-glass doped Nd(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices that require low sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号