首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work evaluates the effect caused by the addition of Fe3+ and Nb5+ ions on the piezoelectric properties of lead zirconate titanate. Three compounds were obtained using the conventional method of mixture of oxides. The oxides were calcined at 850 °C and after that submitted to a uniaxial pressure of 70 MPa and an isostatic pressure of 200 MPa. Subsequently, the samples were sintered at 1200 and 1250 °C for 3.5 h. The surfaces were metalized and polarized in order to determine the piezoelectric properties. High concentration of dopants in lead zirconate titanate yielded high values of dielectric constant (K33T) and specific mass. Moreover, there was an increase of the factor of electromechanical coupling (Kp) when compared to the pure PZT ceramics, associated with a decrease in the mechanic quality factor.  相似文献   

2.
Commercial lead zirconate titanate (PZT) perovskite powders were used to fabricate ceramic tape and then sintered by microwave and conventional methods. Both dielectric and piezoelectric properties of PZT ceramic tapes were studied in terms of sintering process. X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) show the PZT perovskite phase with smaller grain size and dense microstructure can be obtained at a lower sintering temperature by microwave process. It was also observed that shrinkage ratio and bulk density of the tapes sintered at 800 °C were obtained about 19% and 7.46 g/cm3 by the microwave heating method, respectively, that is corresponding to those values of sintered PZT tapes at 950 °C by conventional process. Moreover, the dielectric constant and maximum permittivity are increased about 30% as compared with conventional processing method. The experimental results demonstrated that the characteristics of the PZT tapes could be significantly improved by microwave heating method. These results demonstrate that such a simple approach can upswing the piezoelectric and dielectric properties of these tapes by using microwave process with a short heating time.  相似文献   

3.
4.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   

5.
(Nb+Al) co‐doped SrTiO3 ceramics with a nominal composition of Sr(Nb0.5Al0.5)xTi1‐xO3 (x = 0, 0.02, 0.04, and 0.06) were fabricated using the conventional solid‐state reaction method; giant permittivity (10500) and low dielectric loss (0.03) were obtained at x = 0.06. Dielectric and impedance spectroscopy, X‐ray photoelectron spectroscopy, and Raman spectroscopy, were employed to study why the dielectric property improved. The results indicate that the giant dielectric response occurs because of the combined effects of the off‐center Ti3+ reorientation and conduction of electrons with the polar ordering structure Ti3+/Ti4+. In contrast, the low dielectric loss can be attributed to electron localization that occurs because of the defect dipole . These fundamental understandings will benefit the design of doped SrTiO3 ceramics with desired performance.  相似文献   

6.
The fracture resistance behaviour of a doped lead zirconate titanate (PZT) ceramic after combined thermo-mechanical loading is investigated between room temperature (RT) and 400 °C, i.e. above the Curie temperature (TC). The thermal- and stress-induced depolarisation effects due to domain switching have been assessed by the indentation method on bulk PZTs. This has been extended to multilayered actuators. Experimental findings show a depolarisation effect with the temperature, which is significantly enhanced when combined with mechanical loading. This partial or even full depolarisation of the PZT material below TC leads to important anisotropy effects in the fracture resistance of the piezo-ceramic, which should be taking into account in the design of multilayer actuators where the direction of crack propagation (i.e. parallel or normal to electrodes) can affect the actuator functionality.  相似文献   

7.
Propagation of the small amplitude elastic bulk waves in piezoelectric single crystals La3Ga5SiO14 deformed by electrostatic field E is considered. Coefficients of controlling of velocities by E depending on parameters of nonlinear electromechanical properties have been obtained for the crystals of 32 group of symmetry. The experimental studies of the field dependencies of elastic wave velocities were carried out. The parameters ai of nonlinear eleotromechanical effects for La3Ga5SiO14 were obtained.  相似文献   

8.
《Ceramics International》2022,48(2):2230-2240
A series of BaBi2-xNb2ErxO9 ceramic compositions with different Er3+ concentration (x = 0.0–8 mol %) is synthesized by a conventional solid-state reaction method. The upconversion (UC) light emission under 980 nm excitation with different pump powers and luminescence-based temperature sensing ability of BaBi2-xNb2ErxO9 composition have been examined. The formation of a Bi-layered perovskite phase of BaBi2Nb2O9 is confirmed having an orthorhombic geometry and Fmmm space group. Shifts in the Raman modes indicate reduced interaction of Bi3+ ions with NbO6 octahedron leading to relaxation of structural distortion with increasing Er3+ content. The maximum value for remnant polarization and coercive field of doped BaBi2-xNb2ErxO9 ceramic for (x = 0.08) Erbium concentration comes out to be 2.9524 μC/cm2 and 49.8980 kV/cm. For an optimum content of x = 0.04, two strong UC green emission bands were observed at 549 nm via 4S3/2 → 4I15/2 transition and 527 nm via 2H11/2 → 4I15/2 transitions, and a weak red emission appears at 657 nm attributed to the 4F9/2 → 4I15/2 transition. Pump power dependence suggests that UC emission is a two-photon mechanism for red and green emission bands. Temperature sensing evaluated by the change in the fluorescence intensity ratio (I527/I549) indicates the highest sensitivity to be 0.00996 K?1 at 483 K for an optimum concentration of Er3+ at x = 0.04 in BaBi2-xNb2ErxO9 composition and is useful for non-contact optical thermometry.  相似文献   

9.
Rare earth (Eu3+)-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) polycrystalline ferroelectric ceramics were fabricated by high-temperature solid-state sintering, the phase structure, dielectric and piezoelectric properties were investigated. Eu3+ addition was found to significantly improve dielectric and piezoelectric properties of PMN-PT, where the optimized properties were achieved for the composition of 2.5 mol%Eu: 0.72PMN-0.28PT, with the piezoelectric d33 = 1420 pC/N, dielectric εr = 12 200 and electromechanical k33 = 0.78, respectively. All these results indicate that the Eu3+-doped PMN-PT ceramics are promising candidates for high-performance room-temperature piezoelectric devices.  相似文献   

10.
The influence of Samarium substitution on the dielectric properties of modified PZT composition with representative formula [Pb1−xSmxZr0.588Ti0.392Fe0.01Nb0.01O3] system is reported. Samarium (Sm) was varied from 0 to 0.01/FU in the present system in a step of 0.0025. The samples were prepared by the traditional solid state reaction process. XRD analysis showed all the samples to be single phase with tetragonal structure. Dielectric properties were studied in detail as a function of frequency and temperature (from room temperature (RT) 30 to 400 °C). All compositions show phase transition and the transition temperature (TC) is found to decrease with increase in Sm substitution. Room temperature dielectric constant shows an increasing trend while loss improves with Sm doping.  相似文献   

11.
In this work, we have mainly reported the effect of lanthanum substitution on structural, dielectric, impedance and transport properties of strontium iron niobate (i.e., Sr1-xLax(Fe0.5Nb0.5)1-x/4O3 (x = 0, 0.05, 0.1, 0.15, 0.2)). The materials were synthesized using standard ceramic technology. The preliminary structural analysis was done by using the room temperature X-ray diffraction data. The samples of higher concentrations (x = 0.15 and x = 0.20) show the development of an additional phase (i.e., LaNbO4 and Sr3La4O9). Studies of frequency and temperature dependence of dielectric parameters exhibit an anomaly and relaxor behavior in the compounds. The electrical impedance and modulus analysis of frequency and temperature-dependent data show the contributions of grains and grain boundaries in the resistive and capacitive properties of the compounds. The study of transport properties of AC conductivity has provided the conduction and relaxation mechanism. The substitution of La3+ has significantly changed the dielectric constant, tangent loss, and transport properties of the material.  相似文献   

12.
Porous PZT ceramics have drawn an increasing amount of interest in recent years due to their superior properties compared with the dense material. However, researchers have usually dedicated effort to 0-3 and 3-3 type porous PZT ceramics and little attention has been focused on 1-3 type. The 1-3 type porous PZT ceramics with high porosity were fabricated in this study by freeze-casting process. All samples possessed high piezoelectric coefficient (d33) with high porosity owing to the special one-dimensional ordered porous structure along the poling direction. The d33 values increased by either improving the pore channel orientation level or decreasing pore size. The relative permittivity improved only with the enhancement of pore channel orientation level. The acoustic impedances ranged from 1.45 to 1.35 MRayls which could match well with those of biological tissue or water; therefore, this material would be beneficial in hydrophone applications.  相似文献   

13.
镧和铁掺杂纳米TiO_2的制备及其光催化性能   总被引:1,自引:1,他引:1  
采用溶胶-凝胶法,制备了TiO2、Fe3+/TiO2、La3+/TiO2、Fe3+-La3+/TiO2光催化剂。考察了焙烧温度、焙烧时间和掺杂离子的种类和用量对催化剂用于紫外光催化降解亚甲基蓝性能的影响。制备纯TiO2、Fe3+/TiO2和La3+/TiO2的适宜焙烧温度分别为673,673和773 K,适宜焙烧时间为120min(TiO2)、180min(La3+/TiO2)。La3+/TiO2中La3+的适宜掺杂量为1.0%,Fe3+/TiO2中Fe3+的适宜掺杂量为0.04%,Fe3+-La3+/TiO2中,当La3+的掺杂量为1.0%时,Fe3+的适宜掺杂量为0.02%,相应的脱色率为99.83%,99.51%,98.73%。当掺杂量适当时,4种催化剂用于紫外光催化降解亚甲基蓝的活性次序为:La3+/TiO2>Fe3+/TiO2>Fe3+-La3+/TiO2>TiO2。根据XRD结果,由谢乐公式估算出所得光催化剂为纳米粒子。  相似文献   

14.
15.
利用钛酸正四丁酯水解制备了几种不同浓度的TiO2胶体,在降解甲基橙后发现,R(乙醇与水物质的量比)值为1/50的0.01mol/L TiO2胶体降解效果最好。在不同的pH值、反应温度、搅拌速度下制备了同时掺杂铁离子和铜离子的R值为1/50的0.01mol/L TiO2胶体,通过光降解甲基橙,发现pH值、反应温度、搅拌速度和掺杂离子浓度对TiO2胶体的形态、掺杂效果和光催化活性均有影响。对比纯TiO2胶体的光降解甲基橙效果发现,掺杂铁离子和铜离子的TiO2光催化剂在pH值2.0、低搅拌速度、室温情况下,具有更好的光催化活性。  相似文献   

16.
We present here the single-source-precursor synthesis of Fe3Si and Fe5Si3-containing SiOC ceramic nanocomposites and investigation of their magnetic properties. The materials were prepared upon chemical modification of a hydroxy- and ethoxy-substituted polymethylsilsesquioxane with iron (III) acetylacetonate (Fe(acac)3) in different amounts (5, 15, 30 and 50 wt%), followed by cross-linking at 180 °C and pyrolysis in argon at temperatures ranging from 1000 °C to 1500 °C. The polymer-to-ceramic transformation of the iron-modified polysilsesquioxane and the evolution at high temperatures of the synthesized SiFeOC-based nanocomposite were studied by means of thermogravimetric analysis (TGA) coupled with evolved gas analysis (EGA) as well as X-ray diffraction (XRD). Upon pyrolysis at 1100 °C, the non-modified polysilsesquioxane converts into an amorphous SiOC ceramic; whereas the iron-modified precursors lead to Fe3Si/SiOC nanocomposites. Annealing of Fe3Si/SiOC at temperatures exceeding 1300 °C induced the crystallization of Fe5Si3 and β-SiC. The crystallization of the different iron-containing phases at different temperatures is considered to be a consequence of the in situ generation of a Fe–C–Si alloy within the materials during pyrolysis. Depending on the Fe and Si content in the alloy, either Fe3Si and graphitic carbon (at 1000–1200 °C) or Fe5Si3 and β-SiC (at T > 1300 °C) crystallize. All SiFeOC-based ceramic samples were found to exhibit soft magnetic properties. Magnetization versus applied field measurements of the samples show a saturation magnetization up to 26.0 emu/g, depending on the Fe content within the SiFeOC-based samples as well as on the crystalline iron silicide phases formed during pyrolysis.  相似文献   

17.
《Ceramics International》2016,42(9):10579-10586
Bulk and thin film forms of titanium dioxide (TiO2) have been studied many times due to its very promising optical properties. In this study, low-cost flame spray pyrolysis (FSP) synthesis of Nd3+/Er3+doped TiO2 nanoparticles has been reported for the first time. The produced particles were post-annealed after FSP process at 550 °C in order to obtain crystalline structure. The phase and elemental analysis of the produced materials were performed by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS), respectively. The surface morphology, accurate size and specific surface area of the primary particles were identified using scanning electron microscopy (SEM) and particle size analyser. Luminescent properties of the produced nanoparticles were investigated by steady state and time resolved fluorescence spectra. Doping of TiO2 nanoparticles with the rare earths of Nd3+and Er3+resulted in visible and near-infrared light emission when excited at 364 nm. The utilized nanoparticles yielded bi-and tri-exponential decay curves. Additionally, they exhibited typical upconversion luminescence when radiated by 810 nm.  相似文献   

18.
《Ceramics International》2017,43(3):2903-2909
Magneto-dielectric laminated ceramic composites of xBa(Fe0.5Nb0.5)O3-(1-x)Bi0.2Y2.8Fe5O12(BFN-BYIG) with high volume fractions of the giant dielectric constant material BFN (x=10, 30, 50, 70 wt%) were fabricated by the solid-state sintering method. Microstructure, dielectric and magnetic properties of the composites were investigated. The composites possess stable dielectric properties in the frequency range from 100 Hz to 1 MHz with high dielectric constant and low dielectric loss. The maximum permeability of the magneto-dielectric laminated composites reaches up to about 25. And the magnetic behaviors are strongly dependent on the mass ratio of BYIG. The results indicate that such multilayer structures of BFN/BYIG can enhance the permeability and decrease the dielectric and magnetic loss efficiently.  相似文献   

19.
Nanocomposites of the (1 − x)PZT-xBT system were fabricated by the bimodal particle concept. The effect of fabricating conditions on structural characteristics and dielectric properties of the ceramics was investigated using XRD, SEM, and a standard dielectric measurement. The ceramic–solid solutions and -nanocomposites in the PZT–BT system were comparatively explored. It was clearly seen that the microstructures and the dielectric properties of PZT–BT ceramic-nanocomposites are totally different from those of ceramic–solid solutions. The dielectric behavior of ceramic-nanocomposites displayed superimposition of two phase transitions with a lower maximum value of the dielectric constant than that of the solid solutions.  相似文献   

20.
The effects of Nb2O5 addition on the dielectric properties and phase formation of 0.8BaTiO3-0.2Bi(Znl/2Til/2)O3 (0.8BT-0.2BZT) ceramics were investigated. The desired perovskite phase was achieved with Nb2O5 doping levels being in the range of 0.5 wt.%–3.0 wt.%. The 0.8BT-0.2BZT ceramics doped with 1.5 wt.% Nb2O5 was found to possess a moderate dielectric constant (ε = 1170) and low dielectric loss (tanδ = 1%) at room temperature and 1 kHz frequency, showing a flat dielectric behavior over the temperature range of −55 °C–200 °C. Based on this composition, the X9R-MLCC (multilayer ceramic capacitor) with Ag0.7-Pd0.3 electrode was sintered at 1060 °C. The optimized capacitance of the MLCC is 26.5 nF, with dielectric loss tanδ of 0.9% and electrical resistance of 4.50 × 1011 Ω at room temperature, leading to a high time constant of 11,900 s, decreasing to 175 s at 200 °C, being one order higher than those of commercial X7R MLCC. In addition, the equivalent series resistance (ESR) was found to be on the order of 0.2 mΩ at 2 MHz, much lower than that of the DC Bus Capacitor Bank for the automotive inverters (where the desired characteristic is <3 mΩ). All these characteristics of the newly developed MLCC will benefit the high temperature and high power capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号