首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2016,42(16):18108-18115
Perovskite ceramics with a formula of Ca0.7Ti0.7La0.3Al0.3O3 (CTLA) were produced through a conventional solid-state reaction procedure following three different La3+-doping methods using powders of La2O3, or La2O3/Al2O3 powder mixture, or LaAlO3. La3+ doping favored grain growth and densification, affected the grain size distribution, and improved the dielectric properties of the produced sintered CTLA ceramics. The doping methods had a strong influence on these properties. More specifically, doping with La2O3 and La2O3/Al2O3 resulted in formation of solid solution, while a secondary phase formed in the CTLA ceramics doped with LaAlO3, which caused a coarsening of the microstructure and lowered the La3+ doping effects on the dielectric properties. The experimental results suggest that La3+ doping improves the dielectric properties of the sintered CTLA perovskite ceramics, which are further enhanced by doping with Al3+ ions in small amounts. However, further increase of Al3+ ions content jeopardizes them.  相似文献   

2.
采用固相反应法制备斜方晶系钙钛矿结构Ca07Ti07La0.3Al0.3O3微波介质陶瓷,研究了Al3+、Ca2、Ba2+和La3+离子掺杂对CTLA陶瓷微观组织结构和介电性能的影响.研究结果表明不同掺杂离子对于CTLA陶瓷的微观结构和介电性能有很大的影响,不同离子掺杂CTLA陶瓷的晶粒尺寸、气孔率、晶界析出相有很大的不同.Al3+、Ca2+、Ba2+和La3+离子掺杂可以有效降低CTLA陶瓷的谐振频率温度系数,但Ca2+、Ba2+离子掺杂同时也降低了CTLA陶瓷的致密度和Q×f值,Al3+、La3+离子掺杂不仅有效提高了CTLA陶瓷的致密度和Q×f值,并且有效降低了谐振频率温度系数.适量掺杂La3离子可以有效促进CTLA陶瓷的致密化,提高了CTLA陶瓷的微波介电性能.掺杂0.15mol% La3+的CTLA陶瓷在4.7 GHz下测试介电性能为:εr=48.39,Q×f=32560 GHz,τf=23.68 ppm/C.  相似文献   

3.
《Ceramics International》2022,48(9):12209-12216
We report the structural, magnetic, electrical and broadband microwave absorption in La0.7Na0.3MnO3 sample synthesized by microwave (MW) irradiation (Na0.3LMO_MW) and compare them to the sample synthesized by solid-state (SS) reaction method (Na0.3LMO_SS). Single phase Na0.3LMO_MW was synthesized at 800 °C in 30 min, whereas, Na0.3LMO_SS sample was obtained by sintering at 1200 °C for 48 h. Although both these samples show ferromagnetic transition at TC ~324.8 K, the MW-synthesized sample shows distinct physical properties: broad ferromagnetic transition, smaller saturation magnetization, a large difference between the magnetic ordering and metal-insulator transition temperatures, a large high-field magnetoresistance, a table top-like magnetocaloric effect, and a large low-field microwave absorption compared to the solid state synthesized sample. These differences are suggested to arise from magnetic heterogeneity induced by smaller grain size and surface spin disorder in the MW synthesized La0.7Na0.3MnO3.  相似文献   

4.
《Ceramics International》2021,47(18):25281-25286
Improving the magnetoresistance effect of perovskite ceramic materials under a low applied magnetic field to expand its application range is one of the main research directions of this type of material. In this study, La0.7Ca0.3MnO3 was doped with different levels of Sm by the sol-gel method to yield a series of La0.7-xSmxCa0.3MnO3 (LSCMO) polycrystalline ceramics. X-ray diffraction (XRD) results revealed that LSCMO ceramics possessed standard perovskite structures. Scanning electron microscopy (SEM) showed grains closely connected without obvious holes. In addition, the grain size gradually decreased with the increase in Sm doping content. The resistivity temperature curves displayed a clear metal-insulator transition behavior of LSCMO accompanied by a steep change from ferromagnetic to paramagnetic behavior (FM-PM). The metal-insulator transition temperature (Tp) values of the as-obtained LSCMO gradually shifted toward lower temperatures with increase in Sm content. Moreover, resistivity temperature coefficient (TCR) and magnetoresistance (MR) values also gradually increased with Sm doping content. The transport properties in polycrystalline ceramics could be adequately explained by the double exchange model, which would be useful for interpreting the CMR effects when used in magnetic devices.  相似文献   

5.
Herein, Li1+xMg0.5Ti0.5O2 (0.000 ≤ x ≤ 0.075) ceramics with excess lithium were prepared by solid-state reaction method to compensate for lithium volatilization, thus optimizing dielectric properties. The second phase Mg2TiO4 decreases with excess lithium content and eventually disappears at x = 0.05. Of these, Li1.0375Mg0.5Ti0.5O2 illustrates the best dielectric properties with εr = 16.58, Q × f = 120712 GHz (@9.18 GHz), and τf = −16.31 ppm/°C. From the point of view of non-intrinsic factors, excess lithium at optimum ratios slightly facilitates the sintering of the ceramics, improves densification, and increases the grain size, resulting in improved dielectric properties. For intrinsic factors, a slight increase in bond ionicity results in a slight improvement in εr. First-principles calculations demonstrate that suitable excess lithium increases electron cloud density in the internal space of Li/Mg/TiO6 octahedron and increases band gap, thus optimizing the dielectric properties. The same results were obtained from the perspective of lattice vibrations. The modified Li1.0375Mg0.5Ti0.5O2 ceramics offer great potential for future microwave communication technology.  相似文献   

6.
The effect of B2O3 addition on the sintering, microstructure and the microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics have been investigated. It is found that low-level doping of B2O3 (≤2 wt.%) can significantly improve the densification and dielectric properties of LiNb0.6Ti0.5O3 ceramics. Due to the liquid phase effect of B2O3 addition, LiNb0.6Ti0.5O3 ceramics could be sintered to a theoretical density higher than 95% even at 880 °C. No secondary phase was observed for the B2O3-doped ceramics. There is no obvious degradation in dielectric properties for the ceramics with B2O3 additions. In the case of 1 wt.% B2O3 addition, the ceramics sintered at 880 °C show good microwave dielectric properties of ɛr = 70, Q × f = 5400 GHz, τf = −6.39 ppm/°C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) applications.  相似文献   

7.
《Ceramics International》2020,46(6):7198-7203
To investigate the effect of Sm doping on the electrical properties of Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) (x = 40, 50, 60) ceramics, three Sm-modified ceramics were prepared using the conventional solid-state reaction method. Related electrical measurements, including ferroelectric and dielectric investigations and impedance spectroscopy, were recorded for these ceramics. It was found that a tilted morphotropic phase boundary resulted from the addition of Sm, which induced the best piezoelectric properties and insulating behaviour in the Sm-BZT-60BCT sample. An abnormal P-E loop shrinkage appeared in the Sm-BZT-50BCT sample but not in the other two samples. This could be attributable to the different electronegativities between Ca2+ and Ba2+ and between Zr4+ and Ti4+, whose contents are different in varied samples and have an effect on defect-dipole alignment as well as spontaneous polarization. The activation energies for the bulk conductivity in the three composites were calculated to be 0.28 ± 0.01, 0.08 ± 0.01, and 0.36 ± 0.01 eV, confirming the existence of oxygen vacancies in our samples. The Sm dopant is responsible for the oxygen vacancies. This also leads to an increased Curie temperature in the three composites.  相似文献   

8.
《Ceramics International》2018,44(18):22710-22717
In this study, the influence of substitution of Zr for Ti on crystal structure and microwave dielectric properties of Zn0.15Nb0.3(Ti1-xZrx)0.55O2 (0 ≤ x ≤ 0.7) ceramics were discussed through Rietveld refinement, normalized bond analysis and complex chemical bond theory. Rietveld refinement analysis indicated that a composite could be formed for x ≤ 0.22. Pure orthorhombic type (O-type) solid solutions are prepared in the region of x = 0.3–0.7. With the increasing amount of ZrO2, cell volume of O-type phase increases, and it results in the enlarging and compressing behaviors of chemical bonds. Under the circumstances, the dielectric polarizability is deteriorated because of the reducing chemical bond covalency value (fc), and this finding is also confirmed by Clausius-Mosotti equation. Lattice energy of Zr–O1 bonds and grain size distribution of sintered specimens are mainly responsible for the variations of quality factor (Q × f) value. Chemical bond energy (E) is closely related with the temperature coefficient of resonant frequency value (τf). Typical microwave dielectric properties of Zn0.15Nb0.3(Ti1-xZrx)0.55O2 ceramics (x = 0.22) were obtained when sintered at 1100 °C: εr = 46.31, Q × f = 30,297 GHz, τf = -8.24 ppm/°C.  相似文献   

9.
本文采用溶胶-凝胶法制备了钙钛矿型复合氧化物La0.7Sr0.3Mn1-xCoxO3。利用XRD,SEM对纳米颗粒的结构、形貌进行了表征。结果表明,合成的样品为钙钛矿型,呈立方颗粒状,粒径均匀,边长约为1μm。根据甲基橙的降解情况对其光催化活性进行了研究。结果表明,经过B位Co3+离子掺杂的La0.7Sr0.3Mn1-xCoxO3样品,光催化活性明显提高。  相似文献   

10.
Epitaxial La0.7Ca0.3Mn0.95Co0.05O3 (LCMCO) thin films were prepared on (1 0 0) LaAlO3 single-crystal substrates by pulsed laser deposition (PLD). We have been studied using X-ray diffraction (XRD), electrical transport magneto-transport and dc magnetization. XRD pattern reflects that all films have c-axis epitaxial growth on LaAlO3 substrates. The decrease in out-of-plane cell parameter specifies a progressive relaxation of in the plane compressive strain as the thickness film is increases. From the dc magnetization measurements, it is observed that ferromagnetic to paramagnetic transition temperature increases with increase in the film thickness. Magneto-resistance and temperature coefficient of resistance increases with thickness of film and have maximum value near its metal to insulator transition temperature.  相似文献   

11.
New generation wireless communication systems require characterisations of dielectric permittivity and loss tangent at microwave and terahertz bands. La2Ti2O7 is a candidate material for microwave application. However, all the reported microwave dielectric data are average value from different directions of a single crystal, which could not reflect its anisotropic nature due to the layered crystal structure. Its dielectric properties at the microwave and terahertz bands in a single crystallographic direction have rarely been reported. In this work, a single crystal ferroelectric La2Ti2O7 was prepared by floating zone method and its dielectric properties were characterized from 1 kHz to 1 THz along one single direction. The decrease in dielectric permittivity with increasing frequency is related to dielectric relaxation from radio frequency to microwave then to terahertz band. The capability of characterizing anisotropic dielectric properties of a single crystal in this work opens the feasibility for its microwave and terahertz applications.  相似文献   

12.
The sintering behaviors and microwave dielectric properties of the Ca0.4Li0.3Sm0.05Nd0.25TiO3 (abbreviated CLSNT) ceramics with different amounts of BaCu(B2O5) addition were investigated in this paper. Adding BaCu(B2O5) to CLSNT lowered its sintering temperature from 1300 °C to 925 °C. No secondary phase was observed in the CLSNT ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLSNT ceramics with small amounts of BaCu(B2O5) addition could be well sintered at 925 °C without much degradation in the microwave dielectric properties. Especially, the 1.75 wt.% BaCu(B2O5)-doped CLSNT ceramic sample sintered at 925 °C for 3 h had optimum microwave dielectric properties of εr = 93.5 ± 3.2, Q × f = 6486 ± 434 GHz, and τf = 5 ± 1.5 ppm/°C (at 3–4 GHz), enabling it a promising candidate material for LTCC applications. Obviously, BaCu(B2O5) could be a suitable sintering aid to facilitate the densification and microwave dielectric properties of the CLSNT ceramics.  相似文献   

13.
A modified solid-state combustion route was developed for the preparation of nanocrystalline manganite La0.7Ca0.3MnO3 in a single-step process, using metal nitrates and glucose/KNO3 redox mixture. The obtained sample was found to crystallize within O′ type of orthorhombic perovskite structure (space group Pnma), without the presence of other structural phases or impurities. Nanoparticles are found to have particle size in the range 12–35 nm, and to be highly crystalline without the presence of amorphous surface layer. Magnetic measurements show that nanoparticles display bulk-like magnetic properties, with ferromagnetic phase transition at 125 K and the absence of superparamagnetic or spin-glass behavior.  相似文献   

14.
The ferroelectric and dielectric properties of cerium (Ce) substituted La2Ti2O7 (LTO) have been investigated. Single phase, dense La2?xCexTi2O7 (x = 0.15, 0.25, 0.35) ceramics were prepared by spark plasma sintering. The solubility limit of Ce in La2?xCexTi2O7 was found to be between 0.35 and 0.5. The a-, b- and c-axes of the unit cell decrease with increasing Ce substitution. The Curie point (Tc) of La2?xCexTi2O7 (x = 0, 0.15, 0.25, 0.35) decreases and dielectric constant and loss increase with increasing Ce substitution. Cerium can increase the d33 of La2Ti2O7. The highest d33 was 3.9 ± 0.1 pC/N for La1.85Ce0.15Ti2O7 textured ceramic.  相似文献   

15.
《Ceramics International》2017,43(11):8418-8423
xBa0.7Sr0.3TiO3-SrTiO3 (BST-ST) multilayer ceramics with different BST layers (x=1, 3, 5) were designed and fabricated by lamination of Ba0.7Sr0.3TiO3 (BST) and SrTiO3 (ST) tapes. Dielectric and energy storage properties of the multilayer ceramics were investigated. BST-ST multilayer ceramics exhibited enhanced temperature- and frequency-stability of dielectric properties, accompanying high permittivity (~2000) and low dielectric loss (<0.005) at room temperature. P-E loops revealed that BST-ST multilayer ceramics displayed low remnant polarization and favorable maximum polarization. The optimal energy storage performance was obtained in the composition of x=5 with dielectric breakdown strength of 220 kV/cm and energy storage density of 2.3 J/cm3. These results indicate that BST-ST multilayer ceramics can be a favorable candidate for dielectric capacitor applications.  相似文献   

16.
The pre-reaction step, which is the holding time at 1000 °C in reaction-sintering process, was observed to influence the characteristics of the Ba2Ti9O20 materials profoundly. For the materials possessing high sintered density and of pure Hollandite-like structure, the uniformity of granular structure is the prime factor, altering the microwave dielectric properties of the samples. Utilizing the BaTi4O9 + BaTi5O11 mixtures to replace for the 2BaTiO3 + 7TiO2 ones pronouncedly improved the uniformity of the microstructure and thus markedly increased the Q × f-value for the Ba2Ti9O20 materials. The possible explanation for such a phenomenon is that the B-series mixture forms the Ba2Ti9O20 Hollandite-like phase in a simpler way and results in more uniform microstructure then the A-series mixture. The microwave properties of B-series materials are superior to those of A-series ones, achieving K = 38.2 and Q × f-value = 36,000 GHz for the samples, which were pre-reacted at 1000 °C for 6 h and were sintered at 1410 °C for 4 h by reaction-sintering processes.  相似文献   

17.
Microwave dielectric ceramics with a high-quality factor are vital materials for substrates, dielectric resonators, and filters in millimeter-wave communication systems. Here, a novel microwave dielectric ceramic based on a garnet-type Ca2YZr2Al3O12 compound for bandpass filter was prepared using the solid-state reaction method. Sintering the Ca2YZr2Al3O12 ceramics at 1600 ℃ for 5 h resulted in excellent microwave dielectric properties of εr = 10.81 ± 0.16, Qf = 87,628 ± 4000 GHz and τf = ?34.3 ± 0.5 ppm/℃. Increasing the Ti4+ content of the Ca2YZr2-xTixAl3O12 ceramics significantly improved the sintering process. Superior microwave dielectric properties (εr = 11.93 ± 0.15, Qf = 121,930 ± 2600 GHz and τf = ?30.8 ± 0.4 ppm/℃) were obtained for Ca2YZr2-xTixAl3O12 (x = 0.3) because of its dense microstructure, large grain size and high lattice energy. The Ca2YZr2-xTixAl3O12 (x = 0.3) ceramics were used to fabricate a dual-band bandpass filter with a hairpin structure that exhibited a large return loss (|S11| > 12 dB) and a small insertion loss (|S21| < 0.73 dB). The high performance of the Ca2YZr2-xTixAl3O12 ceramics and the corresponding bandpass filter makes this material a potential candidate for millimeter-wave devices.  相似文献   

18.
The first characterization of the microwave dielectric properties of the La3Ti2TaO11 ceramics is presented. An ordinarily sintered ceramic at 1560 °C exhibits good microwave dielectric properties with ?r = 46, Q × f = 7500 GHz and τf = ?47 ppm/°C. An alternative approach to tailor the temperature coefficient of resonate frequency of La3Ti2TaO11 ceramics is also presented. Textured La3Ti2TaO11 ceramics were fabricated using spark plasma sintering (SPS). By controlling the sintering temperature, orientation degree increased together with the steadily increase in ?r and Q × f. A noteworthy change in τf from ?43.1 ppm/°C to ?13.6 ppm/°C with increasing orientation degree was observed. These results suggest that grain-orientation control was an effective way to tailor the microwave dielectric properties of La3Ti2TaO11 ceramics.  相似文献   

19.
Gehlenite-type Ca2Al2SiO7 ceramics were prepared by the conventional solid-state reaction. Two anomalies were found in the plot of dielectric constant vs temperature, which were associated with space charge polarization. Pure phase crystal structure and no phase transition were observed in the temperature-dependent X-ray diffraction (XRD) patterns and Raman spectra from room temperature (RT) to 900°C. There was relevant relation between Q × f and τƒ with the stretching vibrations of Ca-O bond and O-Ca-O bending in CaO8 polyhedron. Excellent microwave dielectric properties (εr = 8.86, Q × f = 22 457 GHz, and τf = −51.06 ppm/°C) were obtained for Ca2Al2SiO7 sintered at 1440°C in air, which had the potential application to use in microwave and millimeter-wave devices such as capacitors and substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号