首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poplar bioenergy system has been analysed applying life cycle assessment (LCA) to compare its environmental performance to: Ethiopian mustard bioenergy system and natural gas. The life cycle impact assessment (LCIA) shows that the use of fertilizers is the highest impact in four of the 10 environmental categories, representing between 39% and 67% of the impact in them. The diesel used in transport vehicles and agricultural tractors also has a significant impact in another five of the 10 analysed categories 40–85%. The poplar bioenergy system contributes to global warming with 1.90–1.98 g CO2 eq MJ?1 biomass produced. The production and transport as far as the thermoelectric plant of the poplar biomass consumes 0.02 MJ of primary energy per 1 MJ of biomass stored. In comparison with Ethiopian mustard and natural gas, it reduces primary energy consumption by 83% and 89% and the greenhouse gas emission by 84% and 89%, respectively. The results of the analysis support that the poplar bioenergy system is viable from an energy balance and environmental perspective for producing energy in southern Europe, as long as it is cultivated in areas where water is available. This latter point and the better environmental performance of both crops in comparison to natural gas allows us to affirm that the combination of several crops adapted to the local agro-climatic conditions of the territory will be the most suitable strategy in Mediterranean areas that wish to reach the global energy production targets in terms of biomass established by the European Union (EU).  相似文献   

2.
Mirko Bravi  Riccardo Basosi 《Energy》2011,36(7):4297-4306
In this paper the results from a in-depth life cycle analysis of production and use of a novel grid-connected photovoltaic micromorph system are presented and compared to other thin film and traditional crystalline silicon photovoltaic technologies. Among the new thin film technologies, the micromorph tandem junction appears to be one of the most promising devices from the industrial point of view. The analysis was based on actual production data given to the authors directly from the PRAMAC Swiss Company and it is consistent with the recommendations provided by the ISO norms and updates. The gross energy requirement, green house gas emissions and energy pay-back time have been calculated for the electric energy output virtually generated by the studied system in a lifetime period of 20 years. A comparative framework is also provided, wherein results obtained for the case study are compared with data from literature previously obtained for the best commercially available competing photovoltaic technologies. Results clearly show a significant decrease in gross energy requirement, in green house gas emissions and also a shorter energy pay-back time for the micromorph technology.  相似文献   

3.
Energy crops are expected to greatly develop in a very short-term bringing to significant social and environmental benefits. Nevertheless, a significant number of studies report from very positive to negative environmental implications from growing and processing energy crops, thus great uncertainty still remains on this argument. The present study focused on the cradle-to-grave impact assessments of alternative scenarios including annual and perennial energy crops for electricity/heat or first and second generation transport fuels, giving special emphasis to agricultural practices which are frequently surprisingly neglected in Life Cycle Assessment studies despite a not secondary relevance on final outcomes. The results show that cradle-to-farm gate impacts, i.e. including the upstream processes, may account for up to 95% of total impacts, with dominant effects on marine water ecotoxicity. Therefore, by increasing the sustainability of crop management through minimizing agronomic inputs, or with a complementary use of crop resides, can be expected to significantly improve the overall sustainability of bioenergy chains, as well as the competitiveness against fossil counterparts. Once again, perennial crops resulted in substantially higher environmental benefits than annual crops. It is shown that significant amount of emitted CO2 can be avoided through converting arable lands into perennial grasslands. Besides, due to lack of certain data, soil carbon storage was not included in the calculations, while N2O emission was considered as omitted variable bias (1% of N-fertilization). Therefore, especially for perennial grasses, CO2 savings were reasonably higher that those estimated in the present study. For first generation biodiesel, sunflower showed a lower energy-based impacts than rapeseed, while wheat should be preferred over maize for first generation bioethanol given its lower land-based impacts. For second generation biofuels and thermo-chemical energy, switchgrass provided the highest environmental benefits. With regard to bioenergy systems, first generation biodiesel was less impacting than first generation bioethanol; bioelectricity was less impacting than first generation biofuels and second generation bioethanol by thermo-chemical hydrolysis, but highly impacting than Biomass-to-Liquid biodiesel and second generation bioethanol through enzymatic hydrolysis.  相似文献   

4.
A detailed reliability assessment of bioenergy production systems based on poplar cultivation was made. The aim of this assessment was to demonstrate the Economic feasibility of implementing poplar biomass production for power generation in Spain. The assessment considers the following chain of energy generation: cultivation and harvesting, and transportation and electricity generation in biomass power plants (10, 25 and 50 MW). Twelve scenarios were analysed in accordance with the following: two harvesting methods (high density packed stems and chip production in the field), two crop distributions around the power plant and three power plant sizes. The results show that the cost of biomass delivered at power plant ranges from 18.65 to 23.96  Mg?1 dry basis. According to power plant size, net profits range from 3 to 22 million  per yr.Sensibility analyses applied to capital cost at the power plant and to biomass production in the field demonstrate that they do not affect the feasibility of these systems. Reliability is improved if benefits through selling CO2 emission credits are taken into account.This study clears up the Economic uncertainty of poplar biomass energy systems that already has been accepted as environmentally friendlier and as offering better energetic performance.  相似文献   

5.
Rural electrification and the provision of low cost, low emission technology in developing countries require decision makers to be well informed on the costs, appropriateness and environmental credentials of all available options. While cost and appropriateness are often shaped by observable local considerations, environmental considerations are increasingly influenced by global concerns which are more difficult to identify and convey to all stakeholders.Life cycle assessment is an iterative process used to analyse a product or system. This study iteratively applies life cycle assessment (LCA) to a 3 kW community hydroelectric system located in Huai Kra Thing (HKT) village in rural Thailand. The cradle to grave analysis models the hydropower scheme’s construction, operation and end of life phases over a period of twenty years and includes all relevant equipment, materials and transportation.The study results in the enumeration of the environmental credentials of the HKT hydropower system and highlights the need to place environmental performance, and LCA itself, in a proper context. In the broadest sense, LCA results for the HKT hydropower system are found to reflect a common trend reported in hydropower LCA literature, namely that smaller hydropower systems have a greater environmentally impact per kWh – perform less well environmentally - than larger systems. Placed within a rural electrification context, however, the HKT hydropower system yields better environmental and financial outcomes than diesel generator and grid connection alternatives.  相似文献   

6.
A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus)-related environmental burdens are released from the soil during cultivation.  相似文献   

7.
A detailed reliability assessment was made of electricity generation systems in Spain that are based on Brassica carinata cultivation. The assessment considers the following chain of energy generation: biomass cultivation and harvesting, transportation and electricity generation in biomass power plants (10, 25 and 50 MW). Flue gas desulphurisation systems have been included for larger plants following the criteria of the Spanish legislative framework. Six scenarios were analysed in accordance with the following aspects: two crop distributions around the power plant and three power plant sizes. The results show that the cost of biomass delivered at the power plants ranges from 107.81 to 112.54 € Mg−1 dry basis.Sensibility analysis shows that variation in biomass production in the field demonstrates that biomass cost delivered at the plant is notably affected and consequently so is the system's feasibility.Furthermore, the increase of the price of CO2 emission credits, also considered in sensibility analysis, can help to improve the reliability of systems because of the increase of gross profit for each scenario.This study clears up the Economic uncertainty of B. carinata biomass energy systems based on the single use of this renewable energy resource. Higher crop productivities are needed to ensure an economic reliability of the analysed systems. On the other hand biomass mix can solve SO2 emission cleaning cost for large power plants, improving the reliability of B. carinata application as fuel.  相似文献   

8.
A life cycle assessment (LCA) of an alkaline fuel cell based domestic combined heat and power (CHP) system is presented. Literature on non-noble, monopolar cell design and stack construction was reviewed, and used to produce a life cycle inventory for the construction of a 1 kW stack. Inventories for the ancillary components of other commercial fuel cell products were consulted, and combined with information on the fuel processing requirements of alkaline cells to suggest a hypothetical balance of plant that would be required to produce AC electricity and domestic grade heat from natural gas and air.  相似文献   

9.
At the present moment in time, renewable energy sources have achieved great significance for modern day society. The main reason for this boom is the need to use alternative sources of energy to fossil fuels which are free of CO2 emissions and contamination. Among the current renewable energy sources, the growth of wind farms has been spectacular. Wind power uses the kinetic energy of the wind to produce a clean form of energy without producing contamination or emissions. The problem it raises is that of quantifying to what extent it is a totally clean form of energy. In this sense we have to consider not only the emissions produced while they are in operation, but also the contamination and environmental impact resulting from their manufacture and the future dismantling of the turbines when they come to the end of their working life. The aim of this study is to analyse the real impact that this technology has if we consider the whole life cycle. The application of the ISO 14040 standard [ISO. ISO 14040. Environmental management – life cycle assessment – principles and framework. Geneva, Switzerland: International Standard Organization; 1998.] allows us to make an LCA study quantifying the overall impact of a wind turbine and each of its components.Applying this methodology, the wind turbine is analysed during all the phases of its life cycle, from cradle to grave, with regard to the manufacture of its key components (through the incorporation of cut-off criteria), transport to the wind farm, subsequent installation, start-up, maintenance and final dismantling and stripping down into waste materials and their treatment.  相似文献   

10.
The renewable energy sources are often presented as ‘clean’ sources, not considering the environmental impacts related to their manufacture. The production of the renewable plants, like every production process, entails a consumption of energy and raw materials as well as the release of pollutants. Furthermore, the impacts related to some life cycle phases (as maintenance or installation) are sometimes neglected or not adequately investigated.The energy and the environmental performances of one of the most common renewable technologies have been studied: the solar thermal collector for sanitary warm water demand. A life cycle assessment (LCA) has been performed following the international standards of series ISO 14040. The aim is to trace the product's eco-profile that synthesises the main energy and environmental impacts related to the whole product's life cycle. The following phases have been investigated: production and deliver of energy and raw materials, production process, installation, maintenance, disposal and transports occurring during each step. The analysis is carried out on the basis of data directly collected in an Italian factory.  相似文献   

11.
The huge amount of wastes produced by modern and developed countries involves important aspects of economical, social and technical fields and also of the environment. For this reason, different technologies have been proposed for trying to reduce the impact of waste management and disposal. Generally waste management system consists of different steps like selective collection, recycling and reuse operation, energy recovery from waste and landfilling. A new technology proposed for thermal waste treatment is the plasma pyrolysis vetrification (PPV). This system seems to have interesting perspective due to the possibility of thermal treatment of dangerous slag or waste producing inactivate vetrified substances that can be landfilled or used as building materials with no impact on the environment. In this study, the effect of the application of a PPV plant on an existing waste management system was evaluated with a life cycle assessment (LCA) analysis. All the activities connected to the existing system have been carefully analysed by collecting a large quantity of experimental data. Some assumptions have been made, in particular, on the PPV plant performance. LCA analysis results illustrate how the environmental benefits arising from the adoption of the new technology, concerns only few aspects of the whole system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A development in wind energy technology towards higher nominal power of the wind turbines is related to the shift of the turbines to better wind conditions. After the shift from onshore to offshore areas, there has been an effort to move further from the sea coast to the deep water areas, which requires floating windmills. Such a concept brings additional environmental impact through higher material demand. To evaluate additional environmental burdens and to find out whether they can be rebalanced or even offset by better wind conditions, a prospective life cycle assessment (LCA) study of one floating concept has been performed and the results are presented in this paper. A comparison with existing LCA studies of conventional offshore wind power and electricity from a natural gas combined cycle is presented. The results indicate similar environmental impacts of electricity production using floating wind power plants as using non-floating offshore wind power plants. The most important stage in the life cycle of the wind power plants is the production of materials. Credits that are connected to recycling these materials at the end-of-life of the power plant are substantial.  相似文献   

13.
秸秆直燃发电系统的生命周期评价   总被引:4,自引:0,他引:4  
以装机容量25 MW的生物质秸秆直燃发电系统为评价对象,进行生命周期评价.结果表明,秸秆直燃发电1万kWh,可吸收CO2 2502.87 kg,向环境排放SO237.39 kg,NOx90.37 kg,与燃煤发电相比,虽然氮氧化物的排放量有所增加,但减少了温室气体及硫氧化物的排放,污染物的排放主要发生在秸秆燃烧阶段.每发电1万kWh消耗能量15 340.2 MJ,秸秆预处理阶段是能量消耗的主要阶段,须要输入能量13 830.5MJ.秸秆直燃发电过程对环境影响的总负荷为35.18人当量.在此过程中,烟尘居环境影响总负荷的首位.  相似文献   

14.
Remote areas usually do not have access to electricity from the national grid. The energy demand is often covered by diesel generators, resulting in high operating costs and significant environmental impacts. With reference to the case study of Ginostra (a village on a small island in the south of Italy), this paper analyses the environmental sustainability of an innovative solution based on Renewable Energy Sources (RES) integrated with a hybrid hydrogen-battery energy storage system. A comparative Life Cycle Assessment (LCA) has been carried out to evaluate if and to what extent the RES-based system could bring environmental improvements compared to the current diesel-based configuration. The results show that the impact of the RES-based system is less than 10% of that of the current diesel-based solution for almost all impact categories (climate change, ozone depletion, photochemical ozone formation, acidification, marine and terrestrial eutrophication and fossil resource use). The renewable solution has slightly higher values only for the following indicators: use of mineral and metal resources, water use and freshwater eutrophication. The climate change category accounts for 0.197 kg CO2 eq./kWh in the renewable scenario and 1.73 kg CO2 eq./kWh in the diesel-based scenario, which corresponds to a reduction in GHG emissions of 89%. By shifting to the RES-based solution, about 6570 t of CO2 equivalent can be saved in 25 years (lifetime of the plant). In conclusion, the hydrogen-battery system could provide a sustainable and reliable alternative for power supply in remote areas.  相似文献   

15.
This paper presents for the first time a Life Cycle Assessment (LCA) study of electricity generation in Mexico. The electricity mix in Mexico is dominated by fossil fuels, which contribute around 79% to the total primary energy; renewable energies contribute 16.5% (hydropower 13.5%, geothermal 3% and wind 0.02%) and the remaining 4.8% is from nuclear power. The LCA results show that 225 TWh of electricity generate about 129 million tonnes of CO2 eq. per year, of which the majority (87%) is due to the combustion of fossil fuels. The renewables and nuclear contribute only 1.1% to the total CO2 eq. Most of the other LCA impacts are also attributed to the fossil fuel options. The results have been compared with values reported for other countries with similar electricity mix, including Italy, Portugal and the UK, showing good agreement.  相似文献   

16.
Life cycle assessment of a wind farm and related externalities   总被引:1,自引:0,他引:1  
This paper concentrates on the assessment of energy and emissions related to the production and manufacture of materials for an offshore wind farm as well as a wind farm on land based on a life cycle analysis (LCA) model. In Denmark a model has been developed for life cycle assessments of different materials. The model is able to assess the energy use related to the production, transportation and manufacture of 1 kg of material. The energy use is divided into fuels used in order to estimate the emissions through the life cycle. In the paper the model and the attached assumptions are described, and the model is demonstrated for two wind farms. The externalities for the wind farms are reported, showing the importance of life cycle assessment for renewable energy technologies.  相似文献   

17.
Life cycle assessment of photovoltaic electricity generation   总被引:1,自引:0,他引:1  
The paper presents the results of a life cycle assessment (LCA) of the electric generation by means of photovoltaic panels. It considers mass and energy flows over the whole production process starting from silica extraction to the final panel assembling, considering the most advanced and consolidate technologies for polycrystalline silicon panel production. Some considerations about the production cycle are reported; the most critical phases are the transformation of metallic silicon into solar silicon and the panel assembling. The former process is characterised by a great electricity consumption, even if the most efficient conversion technology is considered, the latter by the use of aluminium frame and glass roofing, which are very energy-intensive materials. Moreover, the energy pay back time (EPBT) and the potential for CO2 mitigation have been evaluated, considering different geographic collocations of the photovoltaic plant with different values of solar radiation, latitude, altitude and national energetic mix for electricity production.  相似文献   

18.
Life cycle assessment of biohydrogen production in photosynthetic processes   总被引:1,自引:0,他引:1  
The outcomes of biohydrogen from photosynthesis processes are still small, however different development methods and laboratory studies are carried out to increase the production yield and meanwhile optimize the process to lessen the negative impact on the environment and climate change. The Life Cycle Assessment (LCA) gives the possibility to compare different biohydrogen production approaches using different photosynthesis methods and, at the same time, identify the environmental “hot spots” of the whole process.Inventory analysis and the results of different researchers in this field allow to find values of selected ecoindicators in order to evaluate the biohydrogen production efficiency with the selection of the best initial data for life cycle analysis. These ecoindicators weigh the resources needed for biohydrogen production whole system.This paper presents the first aspects for the implementation of a life cycle assessment.  相似文献   

19.
运用GREET分析软件对新兴车用替代燃料——生物质热解提质燃油进行全生命周期分析,得到工艺路线不可再生能耗为0.295 MJ/MJ,温室气体排放为25.05 g二氧化碳当量,两项指数均远低于传统汽柴油,略优于其他生物质基燃料。热解提质制油工艺中生物原油改性提质过程为最大的能耗源与GHG排放源,各占整个工艺流程的40.28%和42.49%。  相似文献   

20.
The use of hydrogen as an alternative fuel is gaining more and more acceptance as the environmental impact of hydrocarbons becomes more evident. A life cycle assessment study has been carried out to investigate the environmental aspects of hydrogen production. Production by natural gas steam reforming and production upon renewable energy sources are examined. Hydrogen is selected as a future alternative fuel because of the absence of CO2 emissions from its use, its high-energy content and its combustion kinetics. A very large number of environmental burdens result from the operation of the different hydrogen production routes. A complete and accurate identification and quantification of the environmental emissions has been attempted. The use of wind, hydropower and solar thermal energy for the production of hydrogen are the most environmental benign methods. The benefits and the drawbacks of the competing hydrogen production systems are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号