首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用硬脂酸法,在900℃下焙烧4h,制备了层状钙钛矿氧化物K2La2Ti3O10,比传统的高温固相法焙烧的温度明显降低,焙烧的时间显著缩短.采用X-射线衍射仪对产物结构进行了表征.分析表明所得样品结晶良好,无明显杂峰出现,生成了单相的K2La2Ti3O10晶体.  相似文献   

2.
《Ceramics International》2022,48(16):23044-23050
Nd[(Mg1-xZnx)1/2Ti1/2]O3 perovskite ceramics (x = 0, 0.2, 0.4, 0.6, 0.8) are prepared by the solid-state reaction method. The effects of Zn2+ substitution on the structure, microstructure, especially the B-site 1:1 cation ordering and microwave dielectric properties have been investigated. Sintered Nd[(Mg1-xZnx)1/2Ti1/2]O3 ceramics all adopt dense microstructure, along with increased dimensional uniformity as Zn2+ substitution. All the ceramics are confirmed to have B-site 1:1 ordered monoclinic perovskite structure with P21/n space group. Atomic mass difference of B-site elements might be an important factor affecting the B-site 1:1 cation ordering. HRSTEM observation suggest that the doped Zn2+ cations have roughly entered the Mg2+ sites to promote 1:1 cation ordering. The degree of the 1:1 cation ordering can be negatively reflected by the full width at half maximum (FWHM) of F2g(B) mode at 372 cm?1 in Raman spectra. With Zn2+ doping, the degree of the 1:1 cation ordering first increases then decreases, and reaches its maximum at x = 0.6. Meanwhile the best combination of microwave dielectric properties is obtained, as εr = 31.4, Q × f = 74,000 GHz, τf = ?44 ppm/°C. It is found that the long-range ordering not only decreases the dielectric loss but also affects the dielectric constant, providing a theoretical foundation to understand further the correlation between ionic configuration and microwave dielectric properties.  相似文献   

3.
Ferroelectrics such as barium–strontium titanates (BSTO) and Mg-doped BSTO are well known as promising candidates for the application in microwave tunable devices including phase shifters, filters, and others operating at microwave frequencies. In this study new bulk ceramics based on BaTiO3 (BTO)–SrTiO3 (STO) with addition of BaNd2Ti4O12 (BNT) solid solution was investigated. The phase correlations, size, and nature of boundaries between phases were studied using scanning electron microscopy (SEM). The effect of compositional change on the unit cell parameters of the perovskite phase, microwave dielectric properties, and tunability under DC field had been studied. The materials with dielectric constant ∼320–700, Qf = 1950–3000 GHz at 3.5 GHz and tunability ∼8.0–31.7% at E = 1 V/μm were achieved.  相似文献   

4.
The pre-reaction step, which is the holding time at 1000 °C in reaction-sintering process, was observed to influence the characteristics of the Ba2Ti9O20 materials profoundly. For the materials possessing high sintered density and of pure Hollandite-like structure, the uniformity of granular structure is the prime factor, altering the microwave dielectric properties of the samples. Utilizing the BaTi4O9 + BaTi5O11 mixtures to replace for the 2BaTiO3 + 7TiO2 ones pronouncedly improved the uniformity of the microstructure and thus markedly increased the Q × f-value for the Ba2Ti9O20 materials. The possible explanation for such a phenomenon is that the B-series mixture forms the Ba2Ti9O20 Hollandite-like phase in a simpler way and results in more uniform microstructure then the A-series mixture. The microwave properties of B-series materials are superior to those of A-series ones, achieving K = 38.2 and Q × f-value = 36,000 GHz for the samples, which were pre-reacted at 1000 °C for 6 h and were sintered at 1410 °C for 4 h by reaction-sintering processes.  相似文献   

5.
The transparent B2O3 bulks were prepared by quenching B2O3 melt or cooling it down to room temperature with the rate of 0.1-1°C/min. The quenched sample exhibited the dense microstructure, while the pores were observed for low cooling rates, and this is consistent with the slight decrease in density and permittivity (εr) with decreasing the cooling rate. Both the amorphous and cubic phases of B2O3 were indicated by XRD, and the content of the cubic phase increased with the decrease in cooling rate, which was responsible for the decreasing Qf value with the lower cooling rate. The temperature coefficient of resonant frequency (τf) was insensitive to the cooling rate, and the microwave dielectric properties with εr = 3.86-3.97, Qf = 3,200-5,300 GHz and τf = −48.9 to −42.8 ppm/°C were obtained in the B2O3 bulks. The reported microwave dielectric properties of B2O3 bulk are helpful to estimate the effects of the residual B2O3 on the properties of the microwave dielectric ceramics with B2O3 and H3BO3 as the sintering aid.  相似文献   

6.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

7.
The microstructures and microwave dielectric characteristics of complex perovskite Nd(Co1/2Ti1/2)O3 ceramics with 60P2O5–15ZnO–5La2O3–5Al2O3–5Na2O–5MgO–5Yb2O3 (PZLANMY) additions (1–4 wt%) prepared through the conventional solid-state route were investigated. It was found that Nd(Co1/2Ti1/2)O3 ceramics can be sintered at 1210 °C owing to the sintering aid of PZLANMY-glass addition. At 1300 °C, Nd(Co1/2Ti1/2)O3 ceramics with 1 wt% of PZLANMY-glass addition possess a dielectric constant (εr) of 27, a Q×f value of 64,000 GHz and a temperature coefficient of resonant frequency (τf) of ?29 ppm/°C. The PZLANMY-glass doped Nd(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices that require low sintering temperature.  相似文献   

8.
The effect of B2O3 addition on the sintering, microstructure and the microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics have been investigated. It is found that low-level doping of B2O3 (≤2 wt.%) can significantly improve the densification and dielectric properties of LiNb0.6Ti0.5O3 ceramics. Due to the liquid phase effect of B2O3 addition, LiNb0.6Ti0.5O3 ceramics could be sintered to a theoretical density higher than 95% even at 880 °C. No secondary phase was observed for the B2O3-doped ceramics. There is no obvious degradation in dielectric properties for the ceramics with B2O3 additions. In the case of 1 wt.% B2O3 addition, the ceramics sintered at 880 °C show good microwave dielectric properties of ɛr = 70, Q × f = 5400 GHz, τf = −6.39 ppm/°C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) applications.  相似文献   

9.
The effect of excess Al2O3 on the densification, structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3 (CTLA) was investigated. CTLA ceramics were prepared using the conventional mixed oxide route. Excess Al2O3 in the range of 0.1–0.5 wt% was added. It was found that Al2O3 improved the densification. A phase rich in Ca and Al was found in the microstructure of Al2O3 doped samples. Additions of Al2O3 coupled with the slow cooling after sintering improved the microwave dielectric properties. CTLA ceramics with 0.25 wt% Al2O3 cooled at 5 °C/h showed high density and a uniform grain structure with ɛr = 46, Q × f = 38,289 and τf = +12 ppm/°C at 4 GHz. XRD and TEM examinations showed the presence of (1 1 2) and (1 1 0) type twins arising from aac+ tilt system with the presence of anti-phase domain boundaries from the displacement of A-site cations of the orthorhombic perovskite structure.  相似文献   

10.
《Ceramics International》2022,48(8):10713-10720
Ba2Ti9O20 (short for B2T9) ceramics doped with 0.9 mol% MnO2 and y mol% WO3 were prepared by solid-state reaction. The influence of sintering temperature, content of WO3 dopant and the molar ratio x of TiO2: BaCO3 on crystal structure, microstructures as well as microwave dielectric properties of B2T9 ceramics was systematically investigated. The major phase of all samples is B2T9, and the minor phase is BaWO4, respectively. The content of impurity TiO2 alternates with the variation of compositions and sintering temperature, which also leads to different microwave dielectric properties. With the continuous increase of the sintering temperature, the B2T9 phase grains gradually grow larger and transform from rod grains to plate-like grains. The enlargement and flattening of grains also result in the decrease of compactness and deterioration of microwave dielectric properties. It is found that B2T9 ceramics possess better performance when the sintering temperature is 1340°C, which is related to lower TiO2 content, BaWO4, B2T9 grain size, aspect ratio of B2T9 phase and high compactness. When x = 4 and y = 0.2, the relative dielectric constant, quality factor and the temperature coefficient of resonant frequency are 38, 23758 and 7 ppm/°C, respectively.  相似文献   

11.
The first characterization of the microwave dielectric properties of the La3Ti2TaO11 ceramics is presented. An ordinarily sintered ceramic at 1560 °C exhibits good microwave dielectric properties with ?r = 46, Q × f = 7500 GHz and τf = ?47 ppm/°C. An alternative approach to tailor the temperature coefficient of resonate frequency of La3Ti2TaO11 ceramics is also presented. Textured La3Ti2TaO11 ceramics were fabricated using spark plasma sintering (SPS). By controlling the sintering temperature, orientation degree increased together with the steadily increase in ?r and Q × f. A noteworthy change in τf from ?43.1 ppm/°C to ?13.6 ppm/°C with increasing orientation degree was observed. These results suggest that grain-orientation control was an effective way to tailor the microwave dielectric properties of La3Ti2TaO11 ceramics.  相似文献   

12.
Sr3(Ti1-xSnx)2O7 (x = 0–1.0) ceramics were prepared via a standard solid-state reaction method. X-ray diffraction patterns and Rietveld refinement results indicated a composition induced onset of octahedral tilting when x > 0.2, and the crystal structure transformed in sequence: tetragonal (I4/mmm) → coexistence of tetragonal and orthorhombic (I4/mmm + Amam) → orthorhombic (Amam). The τf value could be successfully tuned towards zero and the effects of octahedral tilting on the evolution of τf value were emphasized. Meanwhile, the role of tolerance factor in tailoring the resultant τε of the present ceramics was revealed and compared with the empirical rule for complex perovskites. Qf value decreased monotonously with increasing x, which could be elucidated by the variations of extrinsic parameters and intrinsic dielectric loss extrapolated from the infrared reflectivity spectra. The optimum microwave dielectric properties were achieved at x = 0.8 (εr = 18.6, Qf = 45,250 GHz, τf =–14 ppm/oC).  相似文献   

13.
The structure and microwave dielectric properties of Sr2(Ti1-xSnx)O4 ceramics were determined in the entire composition range of x?=?0–1.0. X-ray diffraction patterns and Raman spectra indicated a composition-induced onset of octahedral tilting at x?=?0.75, and the crystal structure transformed from tetragonal (I4/mmm) to orthorhombic (Pccn). An obvious change of grain morphology was observed in the phase transformation region as well. The variations of the microwave dielectric properties with composition were systematically investigated and the effect of octahedral tilting on the evolution of τf value was emphasized. Moreover, the relationship between τε and tolerance factor of the present ceramics was revealed and compared with the empirical rule in perovskite structure. The role of tolerance factor in designing the materials with required performance was highlighted.  相似文献   

14.
《Ceramics International》2022,48(21):31890-31895
In this paper, a solution for simplifying the manufacture of Mg2GeO4-MgAl2O4 ceramics is reported. The Mg2GeO4-MgAl2O4 ceramics were obtained from MgO, Al2O3 and GeO2 powders using the solid phase reaction approach. The phase structure, microscopic morphology and elemental composition of the Mg2GeO4-MgAl2O4 ceramics were specifically analyzed with XRD, SEM and EDS. The samples contain Mg2GeO4 and MgAl2O4 phases and no other phases are formed. The ceramics have a homogeneous and dense microstructure. This simplified preparation method saves preparation costs and improves the firing behavior of the ceramics, enhancing the microwave dielectric properties of Mg2GeO4-MgAl2O4 ceramics. Excellent microwave dielectric properties with εr = 8.0, Q × f = 150000 GHz and τf = ?34 ppm/°C were attained for Mg2GeO4-MgAl2O4 ceramics sintered at 1600 °C.  相似文献   

15.
Dense KCa2Nb3O10 (KCN) oxides were synthesized and their dielectric properties were investigated. A homogeneous KCN phase was formed in the specimen sintered above 1300 °C, but a CaNb2O6 secondary phase was developed in the specimen sintered at 1400 °C, as result of the evaporation of K2O. The KCN oxides sintered at 1375 °C showed a high relative density that was 97.1% of the theoretical density. Furthermore, liquid-phase-assisted abnormal grain growth occurred during sintering. The dielectric constant of this KCN oxide was 46, with a low dielectric loss of 0.9% at 100 kHz; these values are smaller than those that were previously reported. Complex impedance analysis indicated that the resistivity of the KCN oxide was very low, probably as a result of the presence of K+ ions between the layers, and this could be the origin of the low-frequency dispersion of the KCN oxides.  相似文献   

16.
Giant dielectric ceramic, Na1/2Sm1/2Cu3Ti4O12, was successfully prepared by a modified sol-gel method. X-ray diffraction experiments indicated that a body-centered cubic structure with a space group of Im3 was obtained. Our density functional theory calculations revealed that codoping Na and Sm in the CaCu3Ti4O12 structure resulted in charge compensation between Na and Sm ions in this structure, whereas the oxidation states of Cu and Ti were unaltered. Giant dielectric permittivity ~7.21 × 103 - 8.04 × 103 and low dielectric loss tangent ~0.045–0.049 were accomplished at a sintering temperature of 1050 °C for 12–18 h. Nonlinear J - E property with breakdown electric field ~5.13 – 5.78 × 103 V/cm and nonlinear coefficient ~6.08–6.82 were also achieved. The n-type semiconducting grain originated from short-range migrations of mixed Cu+/Cu2+ and Ti3+/Ti4+ charges. Finally, our charge analysis showed that the occurrence of Cu+ and Ti3+ was related to the existence of oxygen vacancy in these ceramics.  相似文献   

17.
New generation wireless communication systems require characterisations of dielectric permittivity and loss tangent at microwave and terahertz bands. La2Ti2O7 is a candidate material for microwave application. However, all the reported microwave dielectric data are average value from different directions of a single crystal, which could not reflect its anisotropic nature due to the layered crystal structure. Its dielectric properties at the microwave and terahertz bands in a single crystallographic direction have rarely been reported. In this work, a single crystal ferroelectric La2Ti2O7 was prepared by floating zone method and its dielectric properties were characterized from 1 kHz to 1 THz along one single direction. The decrease in dielectric permittivity with increasing frequency is related to dielectric relaxation from radio frequency to microwave then to terahertz band. The capability of characterizing anisotropic dielectric properties of a single crystal in this work opens the feasibility for its microwave and terahertz applications.  相似文献   

18.
It is an important subject to improve the temperature coefficient of resonant frequency (τf) and thermal conductivity (κ) of microwave dielectric ceramics without reducing the Qf value. Ordered domain engineering was applied to realize the previous objectives in Ba(Mg1/3Ta2/3)O3 ceramics. With the increasing ordering degree from 0.835 to 0.897, the optimized Qf value was obtained. Meanwhile, near zero τf from 11.9 to 5.6 ppm °C−1 was achieved, together with increased κ from 5.5 to 7.6 W m−1 K−1, and enhanced dielectric strength from 801 to 921 kV cm−1. The noticeable ordered domain structure with large ordered domains (∼100 nm) and low-energy domain boundaries was revealed in Ba(Mg1/3Ta2/3)O3. The consequent weakened phonon scattering rises the thermal conductivity. The increased bond covalency and oxygen distortion in ceramics with higher ordering degree were suggested as a cause of enlarged bandgap, which enhanced the dielectric strength. The reduced τf is dominated by the less “rattling” space of the cations in the ordered state by inducing more positive τε. The reduced τf, optimized thermal conductivity, and Qf value in the present work indicate that the ordered domain engineering could open up a new direction for the optimization of microwave dielectric ceramics.  相似文献   

19.
We synthesized the Ba2Ti9O20 materials by direct reacting the nano-sized BaTiO3 with TiO2 powders. Pure Holland-like structure was obtained when the mixture of the nano-powders were calcined at 1100 °C. The influence of the processing method on the characteristics of the Ba2Ti9O20 powders and the related microwave dielectric properties for the sintered Ba2Ti9O20 materials was investigated. The combined high-energy-milling and ball-milling (HeM/BM) process results in pronounced improvement for the sinterability of the Ba2Ti9O20 powders such that the samples attain a density higher than 96.2% T.D. when sintered at 1200 °C/4 h. Such a sintering temperature is significantly lower than the one needed for densifying the BM-processed samples to the same high density (1350 °C/4 h). However, the HeM/BM-processed samples show pronouncedly inferior microwave quality factor (Q × f-value) to the BM-processed ones. Raman spectroscopic and SEM microstructural analyses imply that the prime factor resulting in lower Q × f-value for HeM/BM-processed samples is the incomplete development of the granular structure.  相似文献   

20.
《Ceramics International》2016,42(16):18087-18093
Ba3CaNb2O9 is a 1:2 ordered perovskite which presents a trigonal cell within the D3d3 space group. Dense ceramics of Ba3CaNb2O9 were prepared by the solid-state reaction route, and their microwave dielectric features were evaluated as a function of the sintering time. From Raman spectroscopy, by using group-theory calculations, we were able to recognize the coexistence of the 1:1 and 1:2 ordering types in all samples, in which increasing the sintering time tends to reduce the 1:1 domain, leading to an enhancement of the unloaded quality factor. We concluded that this domain acts as a lattice vibration damping, consequently raising the dielectric loss at microwave frequencies. The best microwave dielectric parameters were determined in ceramics sintered at 1500 °C for 32h: ε′ ~ 43; Qu×fr = 15,752 GHz; τf ~ 278 ppm °C−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号