首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic viscoelastic and intrinsic viscosity properties of xanthan, guar, and xanthan–guar blends in dilute aqueous solutions were investigated by using an oscillating capillary rheometer. Influence of mixing temperature on xanthan conformation and interaction with guar is discussed. Synergistic interaction occurred at mixing temperatures of 25 and 80 °C, but a stronger synergistic interaction was observed at mixing temperature 80 °C. The viscous component for all gum solutions was greater than that of the elastic component, which indicated a liquid-like behavior in the dilute regime for the polysaccharide solutions. For both mixing temperatures, the relative viscosities and elasticities of xanthan and guar blends were higher than the relative viscosities and elasticities calculated for blends assuming no interaction. The intrinsic viscosities of xanthan and xanthan–guar blends were higher at 80 °C than at 25 °C. The intrinsic viscosities of xanthan and guar blends were lower than those calculated from the weight averages of the two, and significantly decreased as the xanthan fraction decreased, indicating that xanthan was crucial in controlling the blend viscosity, and that the molecular binding occurred between xanthan and guar.  相似文献   

2.
ABSTRACT:  An oscillating capillary rheometer was used to investigate the effects of xanthan deacetylation on the viscoelastic properties and intrinsic viscosity of xanthan and guar mixtures in dilute aqueous solutions. Deacetylated xanthan exhibited a stronger synergistic interaction with guar than native xanthan did due to the destabilized helical structure and increased chain flexibility of the deacetylated xanthan. No gels were observed for all xanthan–guar mixtures. Native xanthan–guar mixtures exhibited a liquid-like behavior, whereas deacetylated xanthan–guar mixtures exhibited a gel-like behavior. The relative viscosity and elasticity of deacetylated xanthan–guar mixtures were much stronger than those for native xanthan–guar mixtures. The intrinsic viscosities of deacetylated xanthan–guar mixtures were higher than the calculated values assuming no interaction, whereas the intrinsic viscosities of native xanthan–guar mixtures were lower than the calculated values assuming no interaction, demonstrating that intermolecular binding occurred between the disordered segments of xanthan and guar gum in dilute aqueous solutions.  相似文献   

3.
An oscillatory capillary rheometer was used to investigate the effects of NaCl, KCl, and CaCl2 on visco-elastic properties of xanthan and locust bean gum (LBG) blends in dilute solution. Gums were evaluated for intrinsic viscosity and elastic component. Molecular conformation of the xanthan–LBG complex was assessed by the power-law and Huggins equations. Addition of any of the three salts reduced significantly the intrinsic viscosity and elastic component of the gum blends, with a pronounced effect from divalent ions, compared with monovalent ions. The 60% xanthan–40% LBG blend exhibited the strongest attraction between xanthan and LBG. For the three salts, the attraction weakened when 5-mM salt was added and vanished with the addition of 50-mM salt. The strongest attraction between xanthan and LBG molecules was also evidenced by a positive Huggins miscibility coefficient Km, and a positive attraction–repulsion coefficient α. With addition of 50 mM of any of the three salts, the coefficient α became negative, suggesting a strong repulsion between the two gums. The power-law coefficient b increased as salt concentration and LBG fraction increased in the blends for the three salts, suggesting a more flexible xanthan–LBG complex dependent on salt concentrations and LBG.  相似文献   

4.
F. Wang    Y.J. Wang  Z. Sun 《Journal of food science》2002,67(9):3289-3294
ABSTRACT: :
Ubbelohde viscometry, texture analysis, and centrifugation were used to investigate the effects of chain conformational changes of xanthan or deacetylated xanthan gum on its interaction with guar gum. Guar gum was not effective in denaturing xanthan gum when the xanthan helical structure was stabilized by salt. The intrinsic viscosities of deacetylated xanthan and guar blends were higher than those calculated from the weight averages of the 2. Conformational change was not observed for deacetylated xanthan, presuming deacetylated xanthan was in the exact conformation for guar to bind so that the most stable heterotypic structure between deacetylated xanthan and guar was formed directly, thus the strongest interaction was observed between deacetylated xanthan and guar.  相似文献   

5.
Food emulsions exhibit a great diversity of rheological characteristics; hydrocolloids are usually added to deal with creaming instability. Viscoelastic measurements provide information about the microstructure of the system. The objectives of this work were: a) to determine the viscoelastic behavior of two different low in fat oil-in-water food emulsions: a gel like and a fluid type emulsions stabilized with hydrocolloids (gellan gum and xanthan-guar mixtures respectively) b) to model and predict the mechanical relaxation spectrum for both emulsions and continuous aqueous phases. Low-in-fat oil-in-water emulsions (20 g/100 g) were prepared using sunflower oil and Tween 80 (1 wt.%). Fluid emulsions containing xanthan and guar gums were formulated using a synergistic ratio 7:3, with total hydrocolloid concentration ranging between 0.5 to 2 wt%. The aqueous phases contained NaCl (2 wt.%) and acetic acid (2 wt.%). The effect of hydrocolloids was studied using oscillatory measurements (G’ and G” vs. frequency) within the linear viscoelastic range previously determined by stress-sweeps. Time-Concentration Superposition principle was applied to find the master curves that describe the mechanical spectra of the viscoelastic materials. Superposition allows to obtain a wide spectrum of nearly ten decades of frequencies in emulsions containing xanthan–guar mixtures, whereas gellan gum systems did not show a significant frequency displacement. Viscoelastic behavior of the systems was satisfactorily modeled using Baumgaertel-Schausberger-Winter (BSW) equation. This empirical model was used to predict the mechanical relaxation spectrum for both emulsions and continuous aqueous phases. Validation of the predicted spectra was carried out through creep compliance data for emulsion-filled gels and steady-state flow curves for emulsions containing xanthan–guar mixtures.  相似文献   

6.
《LWT》2003,36(5):475-481
Yam tubers (Dioscorea alata) are a non-traditional starch source that could be used as food ingredient. The stability of yam starch pastes (6/100 g suspension) submitted to different pH conditions during gelatinization and the effect of hydrocolloids addition (guar and xanthan gums) on starch syneresis under refrigeration were analyzed. Changes in pH (3, 5, 6) or the addition of gums (0.1–0.5/100 g suspension) did not affect the starch gelatinization temperature nor the gelatinization enthalpy as determined by differential scanning calorimetry. Rheological behavior was characterized by amylograph profiles and oscillatory rheometry. Amylograms showed that yam starch pastes maintained a high viscosity under heat treatment and mechanical stirring in neutral to slightly acidic conditions. Brabender viscosity increased when gums were added; the effect of guar gum on viscosity was more marked than that of xanthan gum. During refrigerated storage exudate production was observed of pastes without gums. Xanthan gum, at a concentration of 0.5/100 g suspension, showed higher effectiveness than guar gum to reduce exudate production during refrigerated storage. The addition of hydrocolloids could allow yam starch to be used in foods requiring low temperatures.  相似文献   

7.
Four types of galactomannans, namely fenugreek gum (FG), guar gum (GG), tara gum (TG) and locust bean gum (LBG), were investigated in the present study on their emulsion and rheological properties. The M/G ratios of the four galactomannans were 1.2, 1.7, 3.0 and 3.7, respectively. The results revealed that the M/G ratio, along with molecular weight and intrinsic viscosity, played an essential role on emulsion and rheological properties. Surface activity followed the trend: FG > GG > LBG > TG. Emulsion capacity and stability followed the trend: GG > FG > TG > LBG. Storage modulus (G′) followed the same order as intrinsic viscosity, which was: GG > FG > TG > LBG. By fitting the shear-thinning region of the flow curves into the Power law model, power law index (n) increased with increased concentration. Zero shear viscosity (ηsp)0 was derived by fitting the Newtonian regions of the flow curves into Cross model, and followed the same order with viscosity based molecular weight (Mv), which is: FG > GG > TG > LBG. Exponents of the four gums were generated from Master curves (log (ηsp)0 versus log C), which were 4.57, 3.92, 4.31 and 4.19 for FG, GG, TG and LBG, respectively.  相似文献   

8.
《Food Hydrocolloids》2006,20(2-3):269-276
The heat stability of emulsions (4 wt% corn oil) formed with whey protein isolate (WPI) or extensively hydrolysed whey protein (WPH) products and containing xanthan gum or guar gum was examined after a retort treatment at 121 °C for 16 min. At neutral pH and low ionic strength, emulsions stabilized with both 0.5 and 4 wt% WPI (intact whey protein) were stable against retorting. The amount of β-lactoglobulin (β-lg) at the droplet surface increased during retorting, especially in the emulsion containing 4 wt% protein, whereas the amount of adsorbed α-lactalbumin (α-la) decreased markedly. Addition of xanthan gum or guar gum caused depletion flocculation of the emulsion droplets, but this flocculation did not lead to their aggregation during heating. In contrast, the droplet size of emulsions formed with WPH increased during heat treatment, indicating that coalescence had occurred. The coalescence during heating was enhanced considerably with increasing concentration of polysaccharide in the emulsions, up to 0.12% and 0.2% for xanthan gum and guar gum, respectively; whey peptides in the WPH emulsions formed weaker and looser, mobile interfacial structures than those formed with intact whey proteins. Consequently, the lack of electrostatic and steric repulsion resulted in the coalescence of flocculated droplets during retort treatment. At higher levels of xanthan gum or guar gum addition, the extent of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase.  相似文献   

9.
10.
The capability of seed extracts in stabilizing emulsions has particularly received interest in recent years. Upon soaking quince seeds into water, biopolymers inside the seeds are extracted to water, forming mucilage. This study investigates the physical stability, rheology and microstructure of oil (sunflower oil) in water emulsions, stabilized by 2% (w/v) whey protein isolate with varying concentrations of xanthan and quince seed gum. Quince seed gum resulted in emulsions with smaller low-shear viscosities and shear thinning capabilities compared to the same concentrations of xanthan. Quince seed gum emulsions with concentrations  0.1 (w/v), displayed rapid creaming due to bridging flocculation. Despite the difference in apparent viscosities, for gum concentrations < 0.2 (w/v), both gums demonstrated comparable stability with xanthan gum in general yielding marginally more stable emulsions. Gum concentrations > 0.3 (w/v) resulted in physically stable emulsions even after 5 months. Overall, quince seed gum displayed significant emulsification and stabilization properties.  相似文献   

11.
The viscosity of diluted guar gum solutions and the viscosity of xanthan and guar gum mixture solutions have been studied. Guar gum solutions showed pseudoplastic behaviour. Apparent viscosity increased with gum concentration and decreased with the temperature at which viscosity was measured. A maximum in the plot of viscosity versus increasing dissolution temperature was observed at 60 °C. This behaviour was related to differences in molecular structure of the polymers solved at different temperatures. Mixtures of xanthan and guar gum showed a higher combined viscosity than that occurring in each separate gum. This synergistic interaction was affected by the gum ratio in the mixture and dissolution temperature of both gums. The effect of polysaccharide concentration (1.0, 1.5 and 2.0 kg m−3), xanthan/guar gum ratio (1/5, 4/2, 3/3, 4/2 and 5/1) and dissolution temperature (25, 40, 60 and 80 °C for both gums) on the viscosity of solutions of mixtures were studied. The highest viscosities were observed when 2.0 kg m−3 gum concentration was used together with a ratio of xanthan/guar gum of 3/3 (w/w) and dissolution temperature of 40 and 80 °C for xanthan and guar gum, respectively. © 2000 Society of Chemical Industry  相似文献   

12.
This study was undertaken to determine the effect of gamma irradiation on physicochemical characteristics of acacia, apricot and karaya gum. The moisture and carbohydrate content varied significantly (p  0.05) from 8.83–11.12 and 77.98–83.08 g/100 g, respectively, in native gums. Protein, fat and ash content also varied significantly among the gums (1.63–2.25, 0.09–1.10 and 3.67–5.72 g/100 g, respectively). Functional properties like water absorption, emulsifying, swelling and solubility index increased with the increase in irradiation dose (0–5 kGy). Viscosity of the aqueous gum dispersions measured using RVA decreased with irradiation under natural and acidic environments. Absorbance of the functional groups like –OH, –COOH, uronic acid and pyranose units increased upon irradiation in acacia and karaya gum as confirmed by FT-IR analysis. Irradiation had a pronounced effect on the rheology of acacia and apricot gums reducing their viscosity. In case of karaya gum, there was a transaction of gel-like solid behaviour to viscous liquid behaviour upon irradiation.  相似文献   

13.
The effects of addition of polysaccharides with different ionic charge on rheology, microstructure, texture and water holding capacity (WHC) of acid milk gels were studied and compared to that of gelatin addition. Similar to gelatin, starch (neutral) and xanthan gum (anionic) did not prevent milk gelation in the first 30 min of the acidification stage, even at high concentrations, and the typical casein network in acid milk gels could still be seen from electron micrographs; gelling and melting of these hydrocolloids were observed during the cooling and heating stages at specific concentrations. On the other hand, two neutral polysaccharides, guar gum (≥ 0.05%) and locust bean gum [LBG] (≥ 0.1%) inhibited milk gelation from the beginning of the acidification stage; the microstructure of the gel was modified greatly and no gelling/melting was observed during the cooling or heating stages. Another anionic polysaccharide, carrageenan, induced earlier milk gelation at low concentration (≤ 0.05%), but inhibited gelation entirely at high concentration (0.2%); inflections at ~ 27 °C and 21 °C were also observed during the cooling and heating stages at 0.05% concentration. The gel microstructure was not changed greatly, but showed smaller particle size at a carrageenan concentration of 0.05% than control sample. None of the polysaccharides showed as much improvement in WHC of the milk gels as gelatin did. Hence, xanthan and starch were found to be closer to gelatin in their effect on acid milk gels compared to guar gum, LBG and carrageenan.  相似文献   

14.
Minced-ostrich meat was blended and chopped with various proportions of gum powder in terms of carboxymethyl cellulose (CMC), locust bean gum (LBG) and xanthan gum (XAN) and other ingredients such as sodium chloride, sodium tripolyphosphate, linseed oil and ice. The mixed batters were then pressurized at 600 MPa and 50 °C for 40 min. Subsequently, their viscoelastic and physicochemical properties were assessed in terms of their dynamic oscillatory moduli, their resultant creep behavior, water-holding capacity and electrophoretic profiles. The results showed that the addition of individual gums and composite gum mixtures influenced both viscoelastic behavior and water-holding capacity of resulting pressurized ostrich-meat emulsions. The most elastic system (greatest G′ or smallest J0 with 4.21 × 10 5 1/Pa) was the meat emulsion with 1% LBG added, while the least were those formed by adding 1% XAN or 0.5% XAN plus 0.5% CMC (J0 with 10 × 10 5 and 20.3 × 10 5 1/Pa, respectively). Subsequent electrophoritic profiles and the measurement of the water-holding capacity of the materials suggested an evidence of ionic interaction between the basic ostrich-meat protein matrix and XAN or XAN plus CMC.Industrial relevanceOstrich meat emulsions containing composite gums were set by combined pressure and temperature. Subsequently, the pressurized gels were characterized by dynamic oscillatory, creep and other physicochemical measurements. In particular, the viscoelastic measuring system is a promising tool for ensuring quality of food biopolymers. Therefore, this methodology is relevant in the area of controlling quality or developing new products where difficulty exists in solubilising the samples.  相似文献   

15.
BACKGROUND: Lallemantia royleana (Balangu) is a mucilaginous endemic plant which is grown in different regions of world. The flow behaviour of Balangu seed extract (BSE) and its mixture with xanthan, guar and locust bean gums at 1:3, 1:1 and 3:1 ratios, in addition to control samples (0% BSE), were evaluated. To describe the rheological properties of samples, the power law model was fitted on apparent viscosity–shear rate data. To evaluate the interaction between BSE and selected hydrocolloids in dilute solutions, the relative viscosity was also investigated. RESULTS: There was no significant difference between the consistency coefficient of guar and locust bean solutions and their blends substituted with 250 g kg?1 BSE. The BSE–xanthan mixture at 1:3 and 1:1 ratios had consistency index equal to xanthan solution. BSE–locust bean gum at all ratios, BSE–xanthan at 1:3 ratio and BSE–guar gum at 1:1 and 3:1 ratios indicated relative viscosity lower than values calculated assuming no interaction. The intrinsic viscosity value of BSE was determined 3.50 dL g?1. CONCLUSION: The apparent viscosities of BSE, selected hydrocolloids and their blends were the same at a shear rate of 293 s?1 and the commercial gums can be substituted by 250 g kg?1 and 500 g kg?1 BSE. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The influence of the locust bean gum (LBG)–λ-carrageenan stabilizer combination on the rheology of dairy creams was analyzed. A central composite factorial design was used to choose the LBG–λ-carrageenan ratio, the weight fraction of each gum ranging from 0 to 0.1 g per 100 g cream. Cross’ rheological model was closely fitted to describe the flow curves of the samples and Cross parameters were correlated with gum concentrations. The rheological behaviour of model aqueous gum solutions, with the same pH, ionic strength, and competitive solute concentration as the cream serum, was also examined to analyze gum interactions. Strong interaction of λ-carrageenan with cream components, probably with caseins, may be anticipated based on a great increase in viscosity. The functional role of LBG seems to be associated with an increase in the emulsion shear stability.  相似文献   

17.
The apparent viscosities of dilute solutions of guar and locust bean gums have been measured. The intrinsic viscosity [n] of guar gum solution is greater than that of locust bean gum solution, but the interaction coefficient k of guar gum solutions is less than that of locust bean gum. Addition of glucose, sucrose, or glucose syrup increases the apparent viscosity of the gum solution. The intrinsic viscosity of the gum solution is decreased but the interaction coefficient is increased.  相似文献   

18.
《Journal of food engineering》2009,95(3-4):290-294
Influences of methylcellulose on dynamic rheological behaviors of 50 g L−1 (dilute) wheat gliadins in 50% (v/v) aqueous propanol were investigated as a function of methylcellulose concentration C ranging from 5 to 20 g L−1. The mixture solutions exhibit shear rate thinning that becomes pronounced with increasing C. Specific viscosities of the first and the second Newtonian plateau viscosities, as well as the steady-flow viscosity as a function of C, reveal that methylcellulose is in the semi-dilute unentangled regime at temperatures from 5 to 65 °C. The intermolecular interaction between methylcellulose and gliadins provides high flow resistance, improved shear thinning and steady-flow activation energy of the mixture solution in comparison with pure gliadins solution.  相似文献   

19.
Enterocin AS-48 is a circular bacteriocin with strong anti-Listeria activity. The purpose of the present study was to evaluate the effect of the bacteriocin incorporated into different coating solutions on a cocktail of five L. monocytogenes strains previously inoculated on apple cubes. Coating solutions were made with chitosan, caseinate, alginate, k-carrageenate, xanthan gum, pectin, starch, carboxymethyl cellulose or methyl cellulose. Coatings were applied singly or combined with enterocin AS-48 at 20 or 40 μg/ml. Samples were stored at 4 °C for 7 days. The single application of coatings had almost no effect (as in alginate and methyl cellulose) or had a low effect on Listeria viability (< 2.0 log cycles), with the exception of chitosan coating which showed a strong anti-Listeria activity (up to 3.7 log cycles at day 7). Coatings dosed with 20-μg/ml enterocin AS-48 reduced viable Listeria counts gradually during storage in most cases, achieving significant reductions (p < 0.05) of 1.0 to 1.9 log cycles after 7 days for k-carrageenate, xanthan gum, pectin, starch, carboxymethyl cellulose and methyl cellulose compared to the single coating. At 40 μg/ml, enterocin AS-48 significantly reduced viable counts (p < 0.05) for most coatings (by 1.4 to 3.3 log cycles, depending on the coating) compared with coatings without bacteriocin (except for chitosan). Chitosan, pectin, xanthan gum and carboxymethyl cellulose coatings, supplemented or not with 40 μg/ml AS-48 were further investigated in combination with 20 mM EDTA or with 2.0% sodium lactate. The single addition of sodium lactate showed the greatest effects at day 7, where it reduced viable counts significantly (p < 0.05) by 1.1 to 2.2 log cycles compared to the single coatings (except for chitosan), whereas the combination of sodium lactate and AS-48 reduced viable counts below detection levels also at day 7 for all coatings. The combination of EDTA and AS-48 was much more effective, reducing Listeria counts below detection levels from day 1 for most of the coatings tested. The combination of EDTA and AS-48 was also the most effective at time 0, achieving reductions of viable counts between 2.0 and 2.7 log cycles depending on the coating immediately after treatment compared with single coatings.Industrial relevanceResults from the present study suggest the potential of edible coatings containing enterocin AS-48 and EDTA for inactivation of L. monocytogenes on apple surfaces. Since edible coatings are widely used on fruit surfaces, coatings activated with enterocin AS-48 and EDTA could find application as a hurdle against L. monocytogenes in fresh-cut apple pieces.  相似文献   

20.
《Food Hydrocolloids》2007,21(5-6):683-692
The equilibrium aqueous solubility of a commercial carob flour was investigated by determining the percentage of soluble and insoluble components as a function of dissolution temperature. The cumulative polysaccharide yield was ca. 50% at 5 °C, increasing approximately as a linear function of temperature to ca. 90% at 85 °C. Overall molecular weight and intrinsic viscosity of the soluble polysaccharide were determined by size-exclusion chromatography. With increasing dissolution temperature, there was weak trend towards higher overall molecular weight and intrinsic viscosity: Mw from 1060 to 1150 kg/mol, and [η] from 11.8 to 12.5 dl/g, between 5 and 65 °C, respectively. Broad, amorphous peaks were evident in the wide-angle X-ray scattering profiles, indicating no role for polysaccharide melting. The continuous increase of molecular weight and decrease of DSgal with dissolution temperature is interpreted as the result of thermodynamic partitioning based on a classical polymer-solvent fractionation, a mechanism that applies only for polysaccharide components with DSgal<0.35 within the accessible temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号