首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactobacillus helveticus is mainly used as starter in Swiss-type cheeses. Often, lysogenic strains are eliminated because of the risk of early lysis and acidification failure due to phage expression. On the other hand, L. helveticus lysis was shown to positively influence cheese proteolysis during ripening. In order to better assess the relationship between lysis and lysogeny, a prophage-cured derivative of L. helveticus CNRZ 303 was isolated (LH 303-G11) and relysogenised (LH 303-G11R), as demonstrated by hybridisation using the whole phage DNA as probe. The growth, lysis in buffered solutions and lytic activities in zymogram using either Micrococcus luteus or L. helveticus as substrate were identical between the mother strain and its cured derivatives. Only morphological differences were observed by scanning electron microscopy: the cells of the cured derivative were shorter in length. The mother strain and its cured and relysogenised derivatives were assayed in triplicate in experimental Swiss cheeses (scale 1:100). No differences were noted during the cheese making: the three strains exhibited identical kinetics of acidification, leading to similar cheeses at day 1 in terms of gross composition and pH. Phages were detected only in the cheeses made with the mother strain and the relysogenised derivative. The lysis of L. helveticus, estimated by viability decrease and release of the intracellular marker D-lactate deshydrogenase, started early before brining and continued during the cold room ripening. No obvious differences of lysis extent were observed. These results demonstrated for the first time that, in the case of LH 303, the extensive lysis observed in cheese is mainly due to autolysin activity and not to prophage induction.  相似文献   

2.
3.
A large degree of strain variation was observed in caseinolytic properties of six cheese related Lactobacillus helveticus strains. Activity on intact αs1- and β-casein was observed only after growth in milk and not in MRS. Totally 27 peptides from αs1- and 22 from β-casein were identified from MS/MS fragmentation patterns. All six strains released peptides from the amino end of αs1-casein, and the bonds Ile6-Lys7 and Gln9-Gly10 were identified as primary cleavage sites. Strain variation in the activity on intact β-casein was observed and five of the six strains released peptides from the C-terminal region. The strains had very different activities and some strains had only trace activities. L. helveticus CNRZ 32 had the highest activity towards αs1-casein while L. helveticus LHC2 had the highest activity towards β-casein, and these two strains also produced unique peptides from both αs1- and β-casein.  相似文献   

4.
Intracellular peptidases of Lactobacillus helveticus may play a major role in the proteolysis of Swiss cheeses, provided that they are released through bacterial lysis. Experimental Swiss cheeses were manufactured on a small scale from thermized and microfiltered milk using as starters (in addition to Streptococcus thermophilus and Propionibacterium freudenreichii) one of two Lb. helveticus strains, ITGLH1 and ITGLH77, which undergo lysis to different extents in vitro. All the cheeses were biochemically identical after pressing. The viability of Lb. helveticus ITGLH1 and ITGLH77 decreased to a similar extent (96-98%) while in the cold room, but the concomitant release of intracellular lactate dehydrogenase in cheeses made with strain ITGLH1 was 5-7-fold that in cheeses made with ITGLH77. Protein profiles and immunoblot detection of the dipeptidase PepD confirmed a greater degree of lysis of the ITGLH1 strain. Free active peptidases were detected in aqueous extracts of cheese for both strains, and proteolysis occurred principally in the warm room. Reversed-phase HPLC revealed a more extensive peptide hydrolysis for ITGLH1, which was confirmed by the greater release of free NH2 groups (+33%) and free amino acids (+75%) compared with ITGLH77. As the intracellular peptidase activities of ITGLH1 and ITGLH77 have previously been shown to be similar, our results indicated that the extent of lysis of Lb. helveticus could have a direct impact on the degree of proteolysis in Swiss cheeses.  相似文献   

5.
Aminopeptidase and aminotransferase activities of six Lactobacillus helveticus strains grown in milk and in a peptide rich glucose based medium de Man Rogosa Sharpe (MRS) were examined. The strains had similar specificity for ten aminopeptidase substrates but some significant (P < 0.05) strain differences in activity levels. Higher aminopeptidase activity was found after growth in milk against almost all substrates. Aminotransferase activity was detected against 13 amino acids. All strains had highest activity against aromatic amino acids followed by branched-chain amino acids. Five strains had activity against Met. Activity against Asn, Asp, Lys, Gln, His and Pro was detected among four strains but only after growth in MRS. Significantly (P < 0.05) higher activity against aromatic amino acids was found after growth in MRS. No obvious differences were found in activities against branched-chain amino acids and Met because of growth medium. These results may offer potential to choose strains that accelerate amino acid release in cheese with or without introducing new aroma notes during ripening.  相似文献   

6.
The acid phosphatase activity levels in a number of Greek cheeses and in Cheddar cheeses were found to be unaffected by storage for up to 18 months and 12 months respectively. In Cheddar cheese, starter organisms made an insignificant contribution to this activity. Studies of acid phosphatase prepared from Streptococcus cremoris-lactis NCDO 762 starter cultures showed that the enzyme was of high molecular weight and largely particle-bound. The pH of optimum activity was 5-2 and the enzyme was inhibited by F-minus,Al-3+, a number of heavy metals, oxidizing agents and sulphydryl-modifying reagents. Kinetic measurements at pH 5-2 gave a Km value for p-nitrophenyl phosphate of 1-2 mM. Orthophosphate, pyrophosphate and isoelectrically precipitated casein behaved as competitive inhibitors to the hydrolysis of p-nitrophenyl phosphate with Ki values of 1-2 mM, 1-0 mM, 1-0 MM and 1-1 mM respectively. In spite of this binding to the enzyme, casein provided a very poor substrate for the starter acid phosphatase. The properties of acid phosphatase present in Cheddar cheese made with Str. cremoris NCDO 924 starter were consistent with the enzyme being exclusively of milk origin and small differences between this and the acid phosphatase previously isolated from bovine milk were attributable to the binding of peptides produced during the cheese maturation to the enzyme molecules. It was concluded that in cheese, phosphatase action was due largely to the enzyme of milk origin, with that provided by the starter being of minor importance.  相似文献   

7.
Kashkaval cheese of different fat contents was manufactured using heat- or freeze-shocked cultures of Lactobacillus delbrueckii var. helveticus added at a level of 2% to cheese milk prior to renneting. Levels of moisture, total N, salt or titratable acidity of cheeses with different fat levels were different. Proteolysis and lipolysis in low-fat Kashkaval cheese without additives were lower than those found in full-fat cheese. Incorporation of heat- or freeze-shocked L. delbrueckii var. helveticus cultures into milk of low-fat cheese greatly enhanced proteolysis and increased slightly the levels of free fatty acids. Regular low fat cheese did not develop adequate Kashkaval cheese flavour and the cheese was firm. However, addition of heat- or freeze-shocked cultures increased the flavour intensity and improved body and texture of the resultant cheese, yielding low-fat cheese with flavour intensity and body characteristics similar to those of standard fat cheese at each stage of ripening.  相似文献   

8.
The addition of commercial lipolytic enzymes to experimental Cheddar cheese accelerated the liberation of free fatty acids during ripening. The substrate specificity of the added enzymes generally governed the chain lengths of the free fatty acids in the cheeses. None of the enzymes accelerated the formation of typical flavour in either the presence or the absence of a flavour-enhancing proteinase, but higher addition levels produced lipolytic rancidity.  相似文献   

9.
This study aimed to evaluate the effect of exopolysaccharide (EPS)-producing Lactobacillus plantarum JLK0142 on the ripening characteristics and in vitro health-promoting benefits of low-fat Cheddar cheese. Three batches of cheese were made by employing a non-EPS–producing cheese starter (control), in combination with Lb. plantarum JLK0142 as an adjunct and the purified EPS as an ingredient. Lactobacillus plantarum JLK0142 survived well in cheese, with counts of 7.99 log cfu/g after 90 d of ripening. All experimental cheeses (with adjunct culture or EPS ingredient) had higher moisture, proteolysis, and sensory scores, and lower hardness and cohesiveness compared with the control cheese. Water-soluble extracts from the experimental cheeses outperformed that of the control in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and hydroxyl radicals, and inhibiting α-amylase, angiotensin-converting enzyme, and HT-29 tumor cell growth. Therefore, incorporation of the EPS-producing culture of Lb. plantarum JLK0142 is promising for improvement of low-fat cheese quality and bioactivities.  相似文献   

10.
Lactobacillus amylovorus DSM 19280 is an antifungal strain that is inhibitory to a range of fungi including Penicillium expansum, Penicillium roqueforti, Aspergillus niger, Aspergillus fumigatus and Fusarium culmorum. In this study, the strain was used as an adjunct culture in a Cheddar cheese model system. During the ripening period, P. expansum spores were applied to the cheese surface to mimic fungal contamination. The presence of the antifungal L. amylovorus adjunct resulted in a four-day delay in appearance of Penicillium growth on the cheese in comparison to the adjunct-free control. When cheeses were exposed to natural airborne fungi, the presence of the adjunct resulted in a six-day delay in the appearance of mycelia on the cheese surface. Significantly, its presence had no detectable negative impact on cheese quality. The results indicate that the strain could have an application for extending the shelf-life of cheeses which are prone to fungal spoilage.  相似文献   

11.
干酪成熟过程中发酵剂的作用   总被引:9,自引:0,他引:9  
介绍干酪成熟过程中乳酸菌发酵剂及二级发酵剂的作用,包括在干酪风味、质地、加速干酪成熟、产生抗菌素及营养和颜色等多方面作用,同时分析成熟期间发酵剂控制不当会引起的负面作用,提出应用具有选择性的发酵剂或经遗传修饰的发酵剂生产干酪具有较强的应用前景。  相似文献   

12.
One of the least controlled defects in Swiss cheese is development of splits that appear during refrigerated storage after cheese is removed from the warm room. Such fissures, or cracks, in the body of the cheese can be as short as 1 cm, or long enough to span a 90-kg block. A 2 x 2 x 2 factorial experiment was used to determine the effect of different Lactobacillus helveticus/Propionibacterium freudenreichii ssp. shermanii starter culture combinations on the occurrence of split defect in Swiss cheese. Eights vats of cheese were made in summer and eight in winter. Each 90-kg block of cheese was cut into twenty-four 4-kg blocks and graded based on the presence of splits. Only small variations were found in the composition of cheeses made during the same season. There were no correlations between moisture, pH, fat, protein, calcium, lactose contents, D/L lactate ratio, or protein degradation that could be used to predict splits after 90 d of storage. However, cheese made in the summer had 2% higher moisture content and a greater prevalence of splits. There was a sixfold increase in amount of downgraded cheese between the best and worst culture combinations used during cheese manufacture. After 90-d storage, 14 to 90% of cheese had splits in the summer, and 1 to 6% in the winter. Split formation increased with time from 60 to 120 d of storage and extent of split formation was influenced by both the lactobacilli and propionibacteria cultures used.  相似文献   

13.
Organoleptic assessments by the NIRD panel of Cheddar cheeses made with Streptococcus cremoris NCDO 924 or 1986, either in enclosed vats excluding nonstarter flora or in open vats, showed that high viable starter populations in curd did not give stronger-flavoured cheese, but led to the development of bitterness. Cheeses made in open vats developed typical flavour more rapidly than those made in enclosed vats. Maturation temperature was the most important factor in determining the flavour intensity; cheese ripened at 13d?C for six months had stronger flavour than corresponding ones ripened at 6d?C for nine months, irrespective of the starter or vat used.  相似文献   

14.
Flavor development in ripening Cheddar cheese depends on complex microbial and biochemical processes that are difficult to study in natural cheese. Thus, our group has developed Cheddar cheese extract (CCE) as a model system to study these processes. In previous work, we found that CCE supported growth of Lactobacillus casei, one of the most prominent nonstarter lactic acid bacteria (NSLAB) species found in ripening Cheddar cheese, to a final cell density of 10(8) cfu/mL at 37°C. However, when similar growth experiments were performed at 8°C in CCE derived from 4-mo-old cheese (4mCCE), the final cell densities obtained were only about 10(6) cfu/mL, which is at the lower end of the range of the NSLAB population expected in ripening Cheddar cheese. Here, we report that addition of Tween 80 to CCE resulted in a significant increase in the final cell density of L. casei during growth at 8°C and produced concomitant changes in cytoplasmic membrane fatty acid (CMFA) composition. Although the effect was not as dramatic, addition of milk fat or a monoacylglycerol (MAG) mixture based on the MAG profile of milk fat to 4mCCE also led to an increased final cell density of L. casei in CCE at 8°C and changes in CMFA composition. These observations suggest that optimal growth of L. casei in CCE at low temperature requires supplementation with a source of fatty acids (FA). We hypothesize that L. casei incorporates environmental FA into its CMFA, thereby reducing its energy requirement for growth. The exogenous FA may then be modified or supplemented with FA from de novo synthesis to arrive at a CMFA composition that yields the functionality (i.e., viscosity) required for growth in specific conditions. Additional studies utilizing the CCE model to investigate microbial contributions to cheese ripening should be conducted in CCE supplemented with 1% milk fat.  相似文献   

15.
16.
Cheddar cheese was made from milk concentrated by reverse osmosis (RO) to increase the lactose content or from whole milk. Manufacturing parameters (pH at coagulant addition, whey drainage, and milling) were altered to produce cheeses with different total Ca contents and low pH values (i.e., <5.0) during ripening. The concentration of insoluble (INSOL) Ca in cheese was measured by cheese juice method, buffering by acid-base titration, rheological properties by small amplitude oscillatory rheometry, and melting properties by UW-Melt Profiler. The INSOL Ca content as a percentage of total Ca in all cheeses rapidly decreased during the first week of aging but surprisingly did not decrease below approximately 41% even in cheeses with a very low pH (e.g., ∼4.7). Insoluble Ca content in cheese was positively correlated (r = 0.79) with cheese pH in both RO and nonRO treatments, reflecting the key role of pH and acid development in altering the extent of solubilization of INSOL Ca. The INSOL Ca content in cheese was positively correlated with the maximum loss tangent value from the rheology test and the degree of flow from the UW-Melt Profiler. When cheeses with pH <5.0 where heated in the rheometer the loss tangent values remained low (<0.5), which coincided with limited meltability of Cheddar cheeses. We believe that this lack of meltability was due to the dominant effects of reduced electrostatic repulsion between casein particles at low pH values (<5.0).  相似文献   

17.
瑞士乳杆菌与干酪乳杆菌在不同原料中的发酵特性研究   总被引:1,自引:1,他引:0  
闵建  李理 《现代食品科技》2009,25(11):1269-1274,1281
研究了瑞士乳杆菌和干酪乳杆菌单独与组合,以及与嗜热链球菌和保加利亚乳杆菌组合在纯牛乳、纯豆乳和混合乳中发酵12h后pH值和酸度值变化,以此来说明它们在3种原料中的生长情况.结果表明,瑞士乳杆菌在纯牛乳和混合乳中产酸能力很强,在纯豆乳中产酸能力不够强,生长不够好;干酪乳杆菌在纯豆乳中生长产酸能力比瑞士乳杆菌强;研究还得出瑞士乳杆菌和干酪乳杆菌组合,以及他们分别与嗜热链球菌和保加利亚乳杆菌组合在纯豆乳生长产酸能力相当.  相似文献   

18.
19.
The sensory properties of probiotic Cheddar cheeses made using Lactobacillus acidophilus 4962, Lb. casei 279, Bifidobacterium longum 1941, Lb. acidophilus LAFTI® L10, Lb. paracasei LAFTI® L26 or B. lactis LAFTI® B94 were assessed after ripening for 9 months at 4 °C. Probiotic cheeses except those with Lb. acidophilus 4962 were significantly different (P<0.05) from the control without any probiotic organism. Acceptability of probiotic cheese with Lb. casei 279 was significantly lower (P<0.05) than that of the control cheese with bitterness and sour-acid taste as the major defects. Concentration of acetic acid in probiotic cheeses was higher (P<0.05) than the control cheese. Vinegary scores did not influence the acceptability of the cheeses (P>0.05). Increased proteolysis in probiotic cheeses did not influence the Cheddary attribute scores (P>0.05). There were positive correlations (P<0.05) between the scores of bitterness and the level of water-soluble nitrogen.  相似文献   

20.
Lactobacillus helveticus, a lactic acid bacterium, is an important species in food fermentation, e.g., cheesemaking, and is considered beneficial to human health. We developed a quantitative real-time polymerase chain reaction (qPCR) method for the detection and quantification of L. helveticus in dairy products. The method uses a set of target-specific PCR primers and a fluorogenic probe and amplifies a part of the pheS gene that encodes the alpha subunit of the phenyalanine-tRNA synthetase. All 24 L. helveticus strains tested were qPCR positive; no signal was observed for 23 strains belonging to closely related species. The limit of detection was ten copies per reaction and the assay covered a linear dynamic range of eight logs. The method was used to detect and enumerate L. helveticus in milk and cheese during ripening; therefore it can be used to study the temporal and spatial distribution of L. helveticus during cheese manufacturing and ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号