首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction‐free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density. Hence, with an extremely thin silver layer, the appropriate density control of the networks can lead to high transmittance and low sheet resistance. Such NNs can be utilized for thin‐film devices without planarization by conductive materials such as PEDOT:PSS. A highly efficient flexible organic solar cell with a power conversion efficiency (PCE) of 10.6% and high device yield (93.8%) is fabricated on PEDOT‐free and ITO‐free transparent electrodes. Furthermore, the flexible solar cell retains 94.3% of the initial PCE even after 3000 bending stress tests (strain: 3.13%).  相似文献   

2.
A simple lamination process of the top electrode for perovskite solar cells is demonstrated. The laminate electrode consists of a transparent and conductive plastic/metal mesh substrate, coated with an adhesive mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS, and sorbitol. The laminate electrode showed a high degree of transparency of 85%. Best cell performance was achieved for laminate electrodes prepared with a sorbitol concentration of ~30 wt% per milliliter PEDOT:PSS dispersion, and using a pre-annealing temperature of 120°C for 10 min before lamination. Thereby, perovskite solar cells with stabilized power conversion efficiencies of (7.6 ± 1.0)% were obtained which corresponds to 80% of the reference devices with reflective opaque gold electrodes.  相似文献   

3.
The rapid development of Internet of Things mobile terminals has accelerated the market's demand for portable mobile power supplies and flexible wearable devices. Here, an embedded metal-mesh transparent conductive electrode (TCE) is prepared on poly(ethylene terephthalate) (PET) using a novel selective electrodeposition process combined with inverted film-processing methods. This embedded nickel (Ni)-mesh flexible TCE shows excellent photoelectric performance (sheet resistance of ≈0.2–0.5 Ω sq−1 at high transmittance of ≈85–87%) and mechanical durability. The PET/Ni-mesh/polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS PH1000) hybrid electrode is used as a transparent electrode for perovskite solar cells (PSCs), which exhibit excellent electric properties and remarkable environmental and mechanical stability. A power conversion efficiency of 17.3% is obtained, which is the highest efficiency for a PSC based on flexible transparent metal electrodes to date. For perovskite crystals that require harsh growth conditions, their mechanical stability and environmental stability on flexible transparent embedded metal substrates are studied and improved. The resulting flexible device retains 76% of the original efficiency after 2000 bending cycles. The results of this work provide a step improvement in flexible PSCs.  相似文献   

4.
This paper is concerned with the measurement of the mass of electrode material released by the electrodes during a high-vacuum breakdown. The techniques used in the experiment described in this paper for quantitative measurement of material released from the electrodes are neutron activation analysis and gamma-ray spectrometry. The method permits determination of the small masses released during the discharge. The threshold energy density required for material release is 15 J/mm2. An empirical equation is given for the material erosion for copper and a curve is given that relates mass erosion versus stored energy for copper electrodes. The experiment indicates that the mechanism responsible for current transport between the electrodes in a vacuum breakdown is a highly ionized plasma formed from the released electrode material.  相似文献   

5.
Because of the intensified electrochemical activities,mixed metal oxides as a representative for pseudo-capacitive materials play a key role for high performance supercapacitor electrodes.Nevertheless,low ion and electron transfer rate and poor cycling performance in the electrode practically restrict further promotion of their electrochemical performance.In order to offset the defect,a novel copper(Cu)foam-supported nickel molybdate nanosheet decorated carbon nanotube wrapped copper oxide nanowire array(NiMoO4 NSs-CNTs-CuO NWAs/Cu foam)flexible electrode is constructed.The as-prepared elec-trode demonstrates a unique core-shell holey nanostructure with a large active surface area,which can provide a large number of active sites for redox reactions.Besides,the CNTs networks supply improved conductivity,which can hasten electron transport Through this simple and efficient design method,the spatial distribution of each component in the flexible electrode is more orderly,short and fast electron transport path with low intrinsic resistance.As a result,the NiMoO4 NSs-CNTs-CuO NWAs/Cu foam as an adhesiveless supercapacitor electrode material exhibits excellent energy storage performance with high specific areal capacitance of 23.40 F cm-2 at a current density of 2 mA cm-2,which outperforms most of the flexible electrodes reported recently.The assembled asymmetric supercapacitor demonstrates an energy density up to 96.40 mW h cm-3 and a power density up to 0.4 W cm-3 under a working voltage window of 1.7 V.In addition,outstanding flexibility of up to 100° bend and good cycling stability with the capacitance retention of 82.53%after 10,000 cycles can be obtained.  相似文献   

6.
Solution-processed metal nanowire mesh transparent electrodes   总被引:3,自引:0,他引:3  
Lee JY  Connor ST  Cui Y  Peumans P 《Nano letters》2008,8(2):689-692
Transparent conductive electrodes are important components of thin-film solar cells, light-emitting diodes, and many display technologies. Doped metal oxides are commonly used, but their optical transparency is limited for films with a low sheet resistance. Furthermore, they are prone to cracking when deposited on flexible substrates, are costly, and require a high-temperature step for the best performance. We demonstrate solution-processed transparent electrodes consisting of random meshes of metal nanowires that exhibit an optical transparency equivalent to or better than that of metal-oxide thin films for the same sheet resistance. Organic solar cells deposited on these electrodes show a performance equivalent to that of devices based on a conventional metal-oxide transparent electrode.  相似文献   

7.
Transparent conductive oxides and alternative transparent electrodes for organic photovoltaics and OLEDs Organic, photoactive devices, such as OLEDs or organic solar cells, currently use indium tin oxide (ITO) as transparent electrode. Whereas ITO is industry‐proven for many years and shows very good electrical and optical properties, its application for lowcost and flexible devices might not be optimal. For such applications innovative technologies such as networkbased metal nanowire or carbon nanotube electrodes, graphene, conductive polymers, metal thin‐films and alternative transparent conductive oxides emerge. Although some of these technologies are rather experimental and far from application, some of them have the potential to replace ITO in selected applications.  相似文献   

8.
Despite nearly two decades of research, the absence of ideal, flexible, and transparent electrodes has been the biggest bottleneck for realizing flexible and printable electronics via roll‐to‐roll (R2R) method. A fabrication of poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate):graphene:ethyl cellulose (PEDOT:PSS:G:EC) hybrid electrodes by R2R process, which allows for the elimination of strong acid treatment. The high‐performance flexible printable electrode includes a transmittance (T) of 78% at 550 nm and a sheet resistance of 13 Ω sq−1 with excellent mechanical stability. These features arise from the PSS interacting strongly with the ethyoxyl groups from EC promoting a favorable phase separation between PEDOT and PSS chains, and the highly uniform and conductive G:EC enable rearrangement of the PEDOT chains with more expanded conformation surrounded by G:EC via the π–π interaction between G:EC and PEDOT. The hybrid electrodes are fully functional as universal electrodes for outstanding flexible electronic applications. Organic solar cells based on the hybrid electrode exhibit a high power conversion efficiency of 9.4% with good universality for active layer. Moreover, the organic light‐emitting diodes and photodetector devices hold the same level to or outperform those based on indium tin oxide flexible transparent electrodes.  相似文献   

9.
Ganguli R  Dunn B 《Nanotechnology》2012,23(29):294013
The power densities of microbial fuel cells with yeast cells as the anode catalyst were significantly increased by immobilizing the yeast in electrically conductive alginate electrodes. The peak power densities measured as a function of the electrical conductivity of the immobilized electrodes show that although power increases with rising electrical conductivity, it tends to saturate beyond a certain point. Changing the pH of the anode compartment at that point seems to further increase the power density, suggesting that proton transport limitations and not electrical conductivity will limit the power density from electrically conductive immobilized anodes.  相似文献   

10.
采用水热合成法制备出片状结构钼酸锌, 并以其为原料, 添加石墨(G)或导电碳(Cc), 利用喷涂法分别制备出ZnMoO4、ZnMoO4-G和ZnMoO4-Cc对电极催化材料, 应用于染料敏化太阳能电池(DSCs)中。实验结果表明: 以ZnMoO4为对电极材料的DSC光电转换效率为4.19%, 在分别添加石墨及导电碳制备成复合对电极材料后, 其相应的光电转换效率分别提高到6.56%及7.36%。其中, ZnMoO4-Cc对电极与相同条件下铂对电极的光电转换效率(7.81%)相当。电化学阻抗(EIS), 循环伏安法(CV)及Tafel极化曲线测试结果表明, ZnMoO4、ZnMoO4-G和ZnMoO4-Cc三种材料均具有一定的导电性和电催化性能。  相似文献   

11.
Transparent conductive material is used in a wide range of applications and is particularly interesting. In the present work, a series of multiwall carbon nanotubes/low density polyethylene nanocomposites with different carbon nanotubes were prepared via solution casting method. The optical transparency, morphology, and resistivity of transparent conductive films have been characterized by using UV–Vis Spectrophotometer, Field emission scanning electron microscope and Multimeter, respectively. Their electrically conductive and optically transparent properties were studied and compared. The result showed that thinner and longer multiwall carbon nanotubes were more suitable for the fabrication of flexible transparent conductive nanocomposites. The sample filled with 1 wt% of T.1 (outside diameter <8 nm, length 10–30 μm) had good transparent conductive properties (volume conductivity of 3.12 × 10?3 S m?1 and optical transmittance of 62.8 % at the light wavelength of 600 nm). The high volume conductivity and optical transparency demonstrated that such kind of nanocomposite films had favorable potential in the applications from electromagnetic interference shielding to transparent electrodes.  相似文献   

12.
Over the past decade, the surging interest for higher‐energy‐density, cheaper, and safer battery technology has spurred tremendous research efforts in the development of improved rechargeable zinc–air batteries. Current zinc–air batteries suffer from poor energy efficiency and cycle life, owing mainly to the poor rechargeability of zinc and air electrodes. To achieve high utilization and cyclability in the zinc anode, construction of conductive porous framework through elegant optimization strategies and adaptation of alternate active material are employed. Equally, there is a need to design new and improved bifunctional oxygen catalysts with high activity and stability to increase battery energy efficiency and lifetime. Efforts to engineer catalyst materials to increase the reactivity and/or number of bifunctional active sites are effective for improving air electrode performance. Here, recent key advances in material development for rechargeable zinc–air batteries are described. By improving fundamental understanding of materials properties relevant to the rechargeable zinc and air electrodes, zinc–air batteries will be able to make a significant impact on the future energy storage for electric vehicle application. To conclude, a brief discussion on noteworthy concepts of advanced electrode and electrolyte systems that are beyond the current state‐of‐the‐art zinc–air battery chemistry, is presented.  相似文献   

13.
Pressure to reduce the global amount of e-waste has increased in recent years. The optimal use of natural resources is a demanding area especially due to the overabundance of the use of resources and challenges with after-life disposal. Herein, an easy method is developed to fabricate an improved version of leaf skeleton-based biodegradable, transparent, flexible, and hydrophobic electrodes. A fractal-like rubber leaf skeleton is used as the substrate, physical vapor deposited Au interlayer to promote adhesion, and uniform deposition of overlayer silver nanowires. The fabricated surfaces present a high level of electrical stability, optical transparency, hydrophobicity, and robust mechanical properties. The prepared electrodes demonstrate a comparable level of optical transmittance to the virgin leaf skeleton. The mechanical sturdiness of the electrodes is verified by 1k bending cycles. To demonstrate the functionality of these hybrid biotic conductive network (HBCN) electrodes, their performance is evaluated as flexible transparent heating elements and as biosignal measurement electrodes. The heater can reach a temperature of 140 °C with only 2.5 V in ≈5 s and Ag nanowire loading of ≈160 μg cm−2. Likewise, electrocardiogram (ECG) and electromyogram (EMG) signals are successfully obtained from the electrodes without using any electrode gel or other electrolytes.  相似文献   

14.
A simple and green method is developed for the preparation of nanostructured TiO2 supported on nitrogen‐doped carbon foams (NCFs) as a free‐standing and flexible electrode for lithium‐ion batteries (LIBs), in which the TiO2 with 2.5–4 times higher loading than the conventional TiO2‐based flexible electrodes acts as the active material. In addition, the NCFs act as a flexible substrate and efficient conductive networks. The nanocrystalline TiO2 with a uniform size of ≈10 nm form a mesoporous layer covering the wall of the carbon foam. When used directly as a flexible electrode in a LIB, a capacity of 188 mA h g?1 is achieved at a current density of 200 mA g?1 for a potential window of 1.0–3.0 V, and a specific capacity of 149 mA h g?1 after 100 cycles at a current density of 1000 mA g?1 is maintained. The highly conductive NCF and flexible network, the mesoporous structure and nanocrystalline size of the TiO2 phase, the firm adhesion of TiO2 over the wall of the NCFs, the small volume change in the TiO2 during the charge/discharge processes, and the high cut‐off potential contribute to the excellent capacity, rate capability, and cycling stability of the TiO2/NCFs flexible electrode.  相似文献   

15.
As one type of emerging photovoltaic cell, dye‐sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco–friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light‐harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided.  相似文献   

16.
Transparent electrodes are a necessary component in many modern devices such as touch screens, LCDs, OLEDs, and solar cells, all of which are growing in demand. Traditionally, this role has been well served by doped metal oxides, the most common of which is indium tin oxide, or ITO. Recently, advances in nano-materials research have opened the door for other transparent conductive materials, each with unique properties. These include CNTs, graphene, metal nanowires, and printable metal grids. This review will explore the materials properties of transparent conductors, covering traditional metal oxides and conductive polymers initially, but with a focus on current developments in nano-material coatings. Electronic, optical, and mechanical properties of each material will be discussed, as well as suitability for various applications.  相似文献   

17.
Bromine‐based flow batteries are well suited for stationary energy storage due to attractive features of high energy density and low cost. However, the bromine‐based flow battery suffers from low power density and large materials consumption due to the relatively high polarization of the Br2/Br? couple on the electrodes. Herein, a self‐supporting 3D hierarchical composite electrode based on a TiN nanorod array is designed to improve the activity of the Br2/Br? couple and increase the power density of the bromine‐based flow battery. In this design, a carbon felt provides a composite electrode with a 3D electron conductive framework to guarantee high electronic conductivity, while the TiN nanorods possess excellent catalytic activity for the Br2/Br? electrochemical reaction to reduce the electrochemical polarization. Moreover, the 3D micro–nano hierarchical nanorod‐array alignment structure contributes to a high electrolyte penetration and a high ion‐transfer rate to reduce diffusion polarization. As a result, a zinc–bromine flow battery with the designed composite electrode can be operated at a current density of up to 160 mA cm?2, which is the highest current density ever reported. These results exhibit a promising strategy to fabricate electrodes for ultrahigh‐power‐density bromine‐based flow batteries and accelerate the development of bromine‐based flow batteries.  相似文献   

18.
Transparent electrodes attract intense attention in many technological fields, including optoelectronic devices, transparent film heaters and electromagnetic applications. New generation transparent electrodes are expected to have three main physical properties: high electrical conductivity, high transparency and mechanical flexibility. The most efficient and widely used transparent conducting material is currently indium tin oxide (ITO). However the scarcity of indium associated with ITO's lack of flexibility and the relatively high manufacturing costs have a prompted search into alternative materials. With their outstanding physical properties, metallic nanowire (MNW)‐based percolating networks appear to be one of the most promising alternatives to ITO. They also have several other advantages, such as solution‐based processing, and are compatible with large area deposition techniques. Estimations of cost of the technology are lower, in particular thanks to the small quantities of nanomaterials needed to reach industrial performance criteria. The present review investigates recent progress on the main applications reported for MNW networks of any sort (silver, copper, gold, core‐shell nanowires) and points out some of the most impressive outcomes. Insights into processing MNW into high‐performance transparent conducting thin films are also discussed according to each specific application. Finally, strategies for improving both their stability and integration into real devices are presented.  相似文献   

19.
The leaf-like structure is a classic and robust structure and its unique vein support can reduce structural instability. However, biomimetic leaf structures on the atomic scale are rarely reported due to the difficulty in achieving a stable vein-like support in a mesophyll-like substrate. A breathable 2D MnO2 artificial leaf is first reported with atomic thickness by using a simple and mild one-step wet chemical method. This homogeneous ultrathin leaf-like structure comprises of vein-like crystalline skeleton as support and amorphous microporous mesophyll-like nanosheet as substrate. When used as an anode material for lithium ion batteries, it first solves the irreversible capacity loss and poor cycling issue of pure MnO2, which delivers high capacity of 1210 mAh g−1 at 0.1 A g−1 and extremely stable cycle life over 2500 cycles at 1.0 A g−1. It exhibits the most outstanding cycle life of pure MnO2 and even comparable to the most MnO2-based composite electrode materials. This biomimetic design provides important guidelines for precise control of 2D artificial systems and gives a new idea for solving poor electrochemical stability of pure metal oxide electrode materials.  相似文献   

20.
A new form of conductive and transparent porous composite electrode is introduced. The electrode material is composed of antimony-doped, tin oxide (ATO)-coated mica platelets imbedded in sol-gel-derived silicate or methyl silicate network. The platelet clays self-align in a layered structure within the silicate film, an anisotropic construction that minimizes the ATO loading required to achieve electric percolation. Transparency and resistance as a function of clay loading is reported with typical values of 100 k Omega/square and 1.5 OD for a 20-microm-thick film. The transparency is lower as compared to sputtered ATO glasses, but this is, as far as we know, the best method for the low-temperature preparation of transparent, porous, and electrically conductive (as opposed to the amply reported ionically conductive) electrode materials. Permselectivity induced by the silicate and clay ingredients is demonstrated by permeation of positively charged methyl viologen compared to negatively charged ferricyanide. Prussian blue-modified ATO-coated platelets dispersed in sol-gel-derived silicate were used to demonstrate feasibility of a transparent and electrically conductive porous electrochromic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号