首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of TiC particle during carbothermal reduction of titanium dioxide (TiO2) was investigated. The mixture with TiO2 and carbon resin was reacted at 1500 °C for 0–45 min under flowing Argon atmosphere. The powders were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The partially reduced TiO2 particles were conglomerated in the initial stage of the reduction and the size of this conglomerate ranged from 500 to 1000 nm. After the complete reaction between Ti as a reduction product and C, the large conglomerates separated to homogeneous and fine TiC particles with a size of 80 nm.  相似文献   

2.
《Ceramics International》2017,43(14):10975-10982
In the present study, a combined modeling and experimental approach were chosen to compare the carbothermal reaction mechanisms of TiO2 with B2O3 or B4C and to obtain a high yield of TiB2 as a final product. A thermochemical modeling software, FactSage, was used to estimate the possible products and their quantities by means of Gibbs Energy Minimization approach. In the experimental step, different reaction temperature (1400–1700 °C) and time (0–60 min) combinations on TiB2 synthesis were investigated at fixed initial molar ratios of TiO2:B2O3:C (1:1:5) and TiO2:B4C:C (1:0.5:1.5). The experimental products were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and BET analysis methods. It was found that calculated modeling results obtained through FactSage agree well with the experimental results. The Magneli phases formed as intermediate products only when B2O3 was used as starting material. Full conversion to TiB2 was obtained at 60 min and 1600 °C for both initial sources of boron.  相似文献   

3.
Al2O3–SiC nanocomposites with 5 and 10 vol% SiC have been in-situ fabricated by sol-gel method followed by carbothermal reduction of alumina–silica gel using B2O3 as sintering aid. Green bodies were formed by cold isostatic pressing of calcined gel, which was prepared by an aqueous sol-containing aluminum chloride, TEOS, sucrose and boric acid. Pressureless sintering was carried out in Ar–12%H2 atmosphere at 1700 °C. Addition of B2O3 (1 or 3 wt%) was an effective densification aid in the Al2O3–5 vol% SiC composites, while the densification of Al2O3–10 vol% SiC composites was not affected by adding B2O3. The composite material containing 5 vol% SiC doped with 3 wt% B2O3 reached 98.7% of full density. Nano-sized β-SiC particles were formed in-situ by means of a reaction between mullite and carbon at 1600 °C. Scanning electron microscopy revealed that the spherical in-situ synthesized SiC nanoparticles were well distributed through the composite and located predominantly to the interior of alumina matrix grains.  相似文献   

4.
《Ceramics International》2017,43(8):5896-5900
Sub-micro sized zirconium diboride (ZrB2) powders were successfully prepared via the boro/carbothermal reduction method using zirconium oxide and boron carbide as the primary raw materials. The prepared mixtures were thermally reacted at 1250 °C for 1 h. The optimized composition range containing the lowest oxide and carbide impurity, which was 0.14% of oxygen and 0.3% of carbon contents, was determined using crystallographic and elemental analysis. The particle size was reduced from 5 µm to 245 nm by the addition of B4C as a reductant within a composition range that maintained the highest purity. The morphology changed from faceted to angular hexagonal bar-like with a simultaneous growth in particle size. Changes in the particle structure were a result of the existing liquid B2O3 phase during the reaction. The 245-nm particles contained 12.1% oxygen content and 16.2% oxygen content for the 5-μm particle in the circumstance in which limited oxides could be produced.  相似文献   

5.
Exclusive hydrogenation of benzaldehyde to benzyl alcohol in gas phase continuous operation (393–413 K, 1 atm) was achieved over Au/Al2O3, Au/TiO2 and Au/ZrO2. Synthesis of Au/Al2O3 by deposition–precipitation generated a narrower distribution (2–8 nm) of smaller (mean = 4.3 nm) Au particles relative to impregnation (1–21 nm, mean = 7.9 nm) with increased H2 uptake under reaction conditions and higher benzaldehyde turnover. Switching reactant carrier from ethanol to water resulted in a significant enhancement of selective hydrogenation rate over Au/Al2O3 with 100% benzyl alcohol yield, attributed to increased available reactive hydrogen. This response extends to reaction over Au/TiO2 and Au/ZrO2.  相似文献   

6.
《Ceramics International》2017,43(17):14593-14598
During freeze casting of TiO2 porous ceramics, the porous architecture is strongly influenced by TiO2 particle size, solids loading, and cooling temperature. This work investigates the influences of particle size, freezing substrate, and cooling temperature on the TiO2 green bodies prepared by freeze casting. The results show that the lamellar channel width with 100 nm particles is larger than that of 25 nm particles, yet the ceramic wall thickness is noticeably decreased. The lamellar structure is more ordered when using a copper sheet than glass as its freezing substrate. A finer microstructure results when frozen at − 50 ℃ than − 30 ℃. Such porous materials have application potentials in a wide range of areas such as photocatalysis, solar cells, and pollutant removal and should be further studied.  相似文献   

7.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

8.
9.
Carbothermal reduction using B2O3 and carbon black was applied for synthesis of B4C powder and the effects of heat-treatment temperature and starting composition of raw mixture on morphology of B4C particles were investigated. Morphology of B4C particles synthesized at 1450 °C was mainly spherical shapes. The B4C powder synthesized at 1550 °C was large and changed in morphology from polyhedral to skeletal shape, and particle size of B4C increased with an increase in the amount of B2O3 in the starting mixtures. The B4C powder synthesized beyond 1650 °C consisted from dendrite-like particles aggregated by small primary particles. Morphology of the primary B4C particles synthesized at 1750 °C changed from polyhedral to rounded shape with increasing the amount of B2O3 in the starting mixtures. It is clarified that heat-treatment temperature and the starting compositions of raw mixtures mainly affected B4C nuclei number along with primary particle size and morphology of primary B4C particles, respectively.  相似文献   

10.
A multilayered alumina-aluminium titanate composite was prepared by a colloidal route from aqueous suspensions. The structure of the laminate was symmetric and constituted of two external Al2O3 layers (width  1750 μm), one central Al2O3 layer (width  1200 μm) and two intermediate thin (width  315–330 μm) Al2O3–Al2TiO5 layers.Additional monolithic materials with the same compositions as those of the layers were fabricated as reference materials. Young's modulus of the monoliths was determined by three point bending. Dilatometry determinations were performed on green specimens, following the same heating and cooling schedules as those used for sintering the laminate, in order to determine the actual dimensional changes on cooling after sintering. The dimensional changes of the sintered specimens on heating and on cooling were also determined. Microscopic distributions of residual stresses were evaluated by fluorescence piezo-spectroscopy, and they revealed the existence of weak tensile and compressive hydrostatic stresses in the aluminium titanate and alumina layers, respectively. The level and sign of these stresses was in good agreement with those predicted based on analysis of the Young's modulus and the dimensional variations during cooling after sintering of the monoliths with the same compositions as those of the layers. Dimensional variations during cooling after sintering were different from those for sintered materials, which presented hysteresis between heating and cooling. In spite of the presence of compressive residual stresses in the external layers of the laminate, strength values of notched samples of the laminated specimens were lower than those for monoliths of the same composition as the external layers.  相似文献   

11.
The nanocrystalline TiO2 materials with average crystallite sizes of 9 and 15 nm were synthesized by the solvothermal method and employed as the supports for preparation of bimetallic Au/Pd/TiO2 catalysts. The average size of Au–Pd alloy particles increased slightly from sub-nano (< 1 nm) to 2–3 nm with increasing TiO2 crystallite size from 9 to 15 nm. The catalyst performances were evaluated in the liquid-phase selective hydrogenation of 1-heptyne under mild reaction conditions (H2 1 bar, 30 °C). The exertion of electronic modification of Pd by Au–Pd alloy formation depended on the TiO2 crystallite size in which it was more pronounced for Au/Pd on the larger TiO2 (15 nm) than on the smaller one (9 nm), resulting in higher hydrogenation activity and lower selectivity to 1-heptene on the former catalyst.  相似文献   

12.
In 80% aqueous ethanol, TiO2 (anatase), ZrO2, ZnO, V2O5, Fe2O3 and Al2O3 photocatalyze the oxidation of iodide ion but CdO and CdS do not; the wavelength of illumination is 365 nm. However, Fe2O3 fails to bring in a sustainable photocatalysis in 60% aqueous ethanol. The photooxidation of iodide ion on TiO2, ZrO2, ZnO, V2O5 and Al2O3 in 60% aqueous ethanol was studied as a function of [I], amount of catalyst suspended, airflow rate, light intensity and solvent composition. The metal oxides examined show sustainable photocatalytic activity. Iodine formation is larger with illumination at 254 nm than at 365 nm. The mechanisms of photocatalysis on semiconductor and non-semiconductor surfaces have been discussed. Photocatalytic generation of iodine has been analyzed using a kinetic model. The photocatalytic efficiencies are of the order V2O5 > TiO2 > ZrO2 > ZnO > Al2O3 and V2O5 > TiO2 > ZrO2 > ZnO=Fe2O3 > Al2O3 in 60% and 80% aqueous ethanol.  相似文献   

13.
《Ceramics International》2017,43(12):8755-8762
In this work, the carbothermal reduction-nitridation process of low-temperature combustion synthesis (LCS) (Al2O3+C) precursor was investigated in detail. Compared with conventional precursor, the LCS precursor possesses many advantages such as amorphous structure, nanosized particles, homogeneous mixing at molecular level. The experimental results indicate that the methods for preparing precursor exert great influence on phase transformation of Al2O3, onset temperature of nitridation and reaction activity. During the calcination, the phase transformation of Al2O3 is hindered by a large amount of surrounding C particles rendering Al2O3 maintains high reactivity. Accordingly, the nitridation reaction initiates at 1300 °C and completes at 1500 °C for 2 h. Furthermore, the reaction mechanism was also discussed on the basis of experiments. More significantly, it is established that the activation energy of carbothermal reduction-nitridation reaction using LCS precursor is Eα=336 KJ/mol.  相似文献   

14.
《Ceramics International》2016,42(9):11217-11223
Reaction ignition and chemical mechanisms in volume combustion synthesis of TiB2 via TiO2–B2O3–Mg precursors were studied using in-situ differential thermal analysis, X-ray diffraction, scanning electron microscopy and thermochemical modeling. Mg–TiO2 samples ignited at 607 °C through a sudden single step solid-solid reaction while Mg–B2O3 samples ignited at 810 °C after melting of magnesium. X-ray diffraction analysis revealed that reduction of TiO2 occurs in multiple steps and forms intermediate compounds. Results showed that heat released from the first reaction between TiO2 and Mg ignites the reactions between Mg, Ti and B2O3 resulting in the formation of TiB2. Samples with larger TiO2 particle size or a higher sample surface to volume ratio showed a two-step reaction behavior and the released heat in the first solid state reaction was insufficient for the propagation of the reaction throughout the sample. In addition, Mg3B2O6 undesired by-product was formed as a result of this two-step reaction.  相似文献   

15.
《Dyes and Pigments》2008,76(3):693-700
Synthesis and the characterization of TiO2:5%Co (green), TiO3:5%Fe (brown-reddish), TiO2:2%Cr (brown), Al2O3:5%Co (blue), Al2O3:5%Fe (brown-reddish) and Al2O3:2%Cr (light green) nanometric pigment powders using polymeric precursor (modified Pechini's method) is reported. Colored thick films were deposited on amorphous quartz substrates by electron beam physical vapor deposition (EB-PVD) using pellets of the pigment powders as target. The evaporation process was carried out in vacuum of 4 × 10−6 Torr and the amorphous quartz substrates were kept at 350 °C during deposition. The TiO2-based pigment powders presented crystalline anatase phase and the Al2O3-based pigment powders showed corundum phase, investigated by X-ray diffraction (XRD). The average particle size of the pigment powders was about 20 nm, measured by scanning electron microscopy with field emission gun (SEM-FEG). Diffuse reflectance spectra and colorimetric coordinates L1, a1, b1 using the CIE-L1a1b1 method are shown for the pigment powders, in the 350–750 nm range. The colored thick films were characterized by transmittance (UV–Vis) and atomic force microscopy (AFM). The average film roughness was ∼5.5 nm and the average grain size obtained in the films was around 75 nm. Films with thickness from 400 nm to 690 nm were obtained, measured by talystep profiler. Transmission spectra envelop method has been used to obtain refractive index and thickness of the Al2O3 colored thick films.  相似文献   

16.
《Ceramics International》2016,42(7):8290-8295
Aluminum oxynitride (AlON) powders were synthesized by the carbothermal reduction and nitridation process using commercial γ-Al2O3 and carbon black powders as starting materials. And AlON transparent ceramics were fabricated by pressureless sintering under nitrogen atmosphere. The effects of ball milling time on morphology and particle size distribution of the AlON powders, as well as the microstructure and optical property of AlON transparent ceramics were investigated. It is found that single-phase AlON powder was obtained by calcining the γ-Al2O3/C mixture at 1550 °C for 1 h and a following heat treatment at 1750 °C for 2 h. The AlON powder ball milled for 24 h showed smaller particles and narrower particle size distribution compared with the 12 h one, which was benefit for the improvement of optical property of AlON transparent ceramics. With the sintering aids of 0.25 wt% MgO and 0.04 wt% Y2O3, highly transparent AlON ceramics with in-line transmittance above 80% from visible to infrared range were obtained through pressureless sintering at 1850 °C for 6 h.  相似文献   

17.
Core–shell, nano-sized LiFePO4-carbon particles were made in one step by scalable flame aerosol technology at 7 g/h. Core LiFePO4 particles were made in an enclosed flame spray pyrolysis (FSP) unit and were coated in-situ downstream by auto thermal carbonization (pyrolysis) of swirl-fed C2H2 in an O2-controlled atmosphere. The formation of acetylene carbon black (ACB) shell was investigated as a function of the process fuel-oxidant equivalence ratio (EQR). The core–shell morphology was obtained at slightly fuel-rich conditions (1.0<EQR<1.07) whereas segregated ACB and LiFePO4 particles were formed at fuel-lean conditions (0.8<EQR<1). Post-annealing of core–shell particles in reducing environment (5 vol% H2 in argon) at 700 °C for up to 4 h established phase pure, monocrystalline LiFePO4 with a crystal size of 65 nm and 30 wt% ACB content. Uncoated LiFePO4 or segregated LiFePO4–ACB grew to 250 nm at these conditions. Annealing at 800 °C induced carbothermal reduction of LiFePO4 to Fe2P by ACB shell consumption that resulted in cavities between carbon shell and core LiFePO4 and even slight LiFePO4 crystal growth but better electrochemical performance. The present carbon-coated LiFePO4 showed superior cycle stability and higher rate capability than the benchmark, commercially available LiFePO4.  相似文献   

18.
The sintering behaviour of conventional yttria powder was investigated, with emphasis on the effect of sintering additives such as B2O3, YF3, Al2O3, ZrO2, and TiO2, etc. at sintering temperatures from 1000 °C to 1600 °C. Powder shrinkage behaviour was analysed using a dilatometer. The powder sintering mechanisms were identified at different temperatures using powder isothermal shrinkage curves. This analysis showed that the sintering additives B2O3 and YF3 could improve yttria sintering by changing the diffusion/sintering mechanisms at certain temperatures, while sintering additives TiO2, Al2O3 and ZrO2 appeared to retard the powder densification at temperatures around 1000 °C and are more suitable when used at temperatures in excess of 1300 °C. The powder with La2O3 added had the slowest densification rate throughout the test temperatures in this experiment and was also found to be more suitable when used at temperatures higher than 1550 °C.  相似文献   

19.
To increase the mixing uniformity of coarse alumina grains with a small amount of nano TiO2 particles, TiO2 particles were prepared on the surface of coarse Al2O3 grains by in-situ hydrolysis of TiCl4. The coated coarse Al2O3 powder was used to prepare microfiltration membranes supports. The effects of TiO2 content and sintering temperatures on the bending strength, porosity and pore size distribution of the obtained supports were studied. The results show that the melted nano TiO2 grains locate mainly at the neck of Al2O3 grains, which increases the bending strength of the support by increases the neck area. However, the bending strength is weakened if the TiO2 content is excessive. No aggregated nano TiO2 grainsare found. The resulting supports sintered at 1650 °C for 2 h yields a bending strength of 55.4 MPa, a porosity of 38% with a mean pore size of 8.0 μm.  相似文献   

20.
The sintering behaviors and microwave dielectric properties of the Ca0.4Li0.3Sm0.05Nd0.25TiO3 (abbreviated CLSNT) ceramics with different amounts of BaCu(B2O5) addition were investigated in this paper. Adding BaCu(B2O5) to CLSNT lowered its sintering temperature from 1300 °C to 925 °C. No secondary phase was observed in the CLSNT ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLSNT ceramics with small amounts of BaCu(B2O5) addition could be well sintered at 925 °C without much degradation in the microwave dielectric properties. Especially, the 1.75 wt.% BaCu(B2O5)-doped CLSNT ceramic sample sintered at 925 °C for 3 h had optimum microwave dielectric properties of εr = 93.5 ± 3.2, Q × f = 6486 ± 434 GHz, and τf = 5 ± 1.5 ppm/°C (at 3–4 GHz), enabling it a promising candidate material for LTCC applications. Obviously, BaCu(B2O5) could be a suitable sintering aid to facilitate the densification and microwave dielectric properties of the CLSNT ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号