首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The preparation of oriented AlN bulk ceramics with and without additives was achieved by slip casting in a high magnetic field. The a and b axes of the AlN were aligned parallel to the direction of the magnetic field. The degree of crystallographic orientation was controlled by the viscosity of the slurry and the grain growth during sintering attributed to the sintering additives. The mechanical properties of the textured AlN depended on the direction of the crystallographic orientation.  相似文献   

2.
High-density NiFe2O4 ceramics with homogeneous microstructure were produced by slip casting and pressureless sintering. The slurry stability, sintering behavior, and microstructure of NiFe2O4 ceramics were investigated. A stable slurry can be obtained by adding 12.5 wt% NiFe2O4 nanoparticle and 5 wt% nano-binder at a slurry pH around 11.0. The linear shrinkage and linear shrinkage rate for both NiFe2O4 ceramic green bodies shaped by cold press molding and slip casting showed nearly the same trends. The temperature associated with the maximum linear shrinkage rate of slip casted green body was 1263.5°C, which was lower than that of cold press molded sample (1272.0°C). The sintering activation energy of slip casted green body was also lower than that of cold press molded sample (279.18 vs 288.47 kJ mol−1), owing to high density and homogeneity of slip-casted green compact. A high-density NiFe2O4 ceramics with uniform grain size distribution can be produced by slip casting and pressureless sintering at 1350°C for 6 hours, attributed to the ability of slip casting to minimize agglomerates and micropores. It demonstrated that slip casting was more suitable to prepare high-density NiFe2O4 ceramics with good homogeneity.  相似文献   

3.
用凝胶预碳化处理工艺的溶胶-凝胶法制备了晶粒粒径小且分散性能较好的钙锶铋钛(Ca0.4Sr0.6Bi4Ti4O15)纳米晶粉体.借助差热-热重分析仪、X射线衍射仪和扫描电镜等分别确定凝胶的预碳化处理温度,研究了预碳化处理工艺对粉体的物相结构、粉体的微观形貌以及分散性能的影响,并分析讨论了预碳化机理.结果表明:在300℃对前驱体凝胶进行预碳化处理增强了粉体的分散性,降低粉体的粒度,提高粉体的均匀性.凝胶预碳化处理工艺并未对粉体的物相结构造成影响.经过预碳化处理制备的粉体的颗粒尺寸集中在100nm左右;未经预碳化处理的粉体的颗粒尺寸为100nm~1 μm.凝胶预碳化处理后,高吸附活性的有机碳包覆在前驱体的表面是有效减少粉体团聚的原因.  相似文献   

4.
In the present work, a high quality (Q) Ca1.15Sm0.85Al0.85Ti0.15O4 (CSAT) ceramic was prepared via reaction sintering (RS) method. The phase structure, surface morphology, packing fraction (PF), and valence bond of the ceramic were systematically investigated. By studying the X-ray diffraction (XRD) pattern of the ceramic, it was determined to exhibit a single-phase tetragonal structure with the dimensions of a = b = 3.6943(13)Å and c = 12.0320(23)Å and volume of V = 164.22(10) Å3. The influence of the intrinsic quality loss factor on the Q × f value was investigated by calculating the PF. Simultaneously, the bond valence of the samarium (Sm) sites was evaluated to elucidate the relationship with the temperature coefficient of resonant frequency (τf). The CSAT ceramic was sintered at 1550 °C for 6 h and exhibited exceptional characteristics in terms of the relative dielectric constant (εr) = 17.5, quality factor (Q × f) = 66700 GHz, and τf = ?6.93 ppm/°C. These results highlighted the excellent suitability of the RS method for preparing CSAT ceramics with outstanding microwave dielectric properties.  相似文献   

5.
A series of textured (Nb0.5La0.5)xTi1-xO2 (x = 0, 0.0025, 0.005, 0.01) ceramics were sintered in a nitrogen environment after magnetic slip casting (12 T). Component x ranges from 0.0025 to 0.01 while the degree of orientation increases from 0.49 to 0.88. (Nb0.5La0.5)0.01Ti0.99O2 ceramics in the parallel magnetic field's plane have a high permittivity ɛr ≈ 1.6 × 104 and the ultralow dielectric loss tanδ ≈ 0.0038 at 104 Hz. The temperature coefficient value of η ≤ ± 7.1% between 218–473 K, fulfilling the X9R requirements. The giant permittivity properties of textured ceramics are mainly derived from internal barrier layer capacitor impacts, electron hopping, and electron-pinned defect-dipoles polarization. The microstructure evolution of sintered ceramics was modified by texturing in a magnetic field, leading to higher activation energies of dielectric relaxations and resistance of grain boundaries and grains. This excellent performance is expected to show great potential in electronic devices' miniaturization and high-density energy storage.  相似文献   

6.
The aim of this paper is to investigate the effect of slip casting process and the annealing before and after sintering to achieve a transparent MgAl2O4. To remove contaminants such as carbon from the structure of shaped spinel bodies, at first, the samples were annealed at temperature of 800?°C, 900?°C and 1000?°C for 2?h and then sintered at 1400?°C. By annealing the sample before sintering at 900?°C, the transmission increased (15% at IR region and 10% at visible region). Although by annealing the samples, the amount of carbon contamination reduced. Annealing the samples after sintering also had some desirable results. The samples annealed at temperature of 1200?°C for a time of 3, 5 and 10?h. The darkness of samples reduced due to the removal of carbon impurities and the sample was annealed at 1200?°C for 5?h had the most transparency in the visible and infrared regions.  相似文献   

7.
Sintering densification processes of the composite ceramics (Bi3.15Nd0.85Ti3O12 (BNdT)/CoFe2O4 (CFO)) have been investigated using dilatometric experiments combining with the TG-DTA, density measurements and microstructure studies. Microstructures analyses and quantitative calculations show that the composite ceramics achieve densification at low temperatures (<1150 °C). The formation of coherent-lattice interfaces between (200)/(020)BNdT and (310)CFO are considered to play an important role on such densification. The intrinsic preferred orientation of BNdT grains is suppressed by CFO phase because of this coherent relationship. Although the sintering activation energies of 0.8BNdT-0.2CFO are about 2.7 times larger than those of pure BNdT due to the pinning effect, the composite ceramic could still be densified, indicating the formation energy of coherent-lattices provided the extra sintering force. The even coercive electric fields of the resulting pure BNdT and 0.8BNdT-0.2CFO ceramic are approximately 89 and 97 kV/cm, respectively, at 250 kV/cm. The polarization of 0.8BNdT-0.2CFO reaches saturation around 430 kV/cm.  相似文献   

8.
《Ceramics International》2023,49(1):716-721
Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics were prepared by a reaction sintering method. The sintering behavior, phase composition, microstructure and microwave dielectric performances of ceramics were investigated. X-ray diffraction patterns illustrated that both the Ca1.15Nd0.85Al0.85Ti0.15O4(CNAT) and Ca1.15Y0.85Al0.85Ti0.15O4(CYAT) ceramics are single-phase structures, and the Ca1.15La0.85Al0.85Ti0.15O4(CLAT) ceramic contain LaAlO3 and CaO phases. The apparent morphology and elemental distribution of the ceramic samples were analyzed by using scanning electron microscope and energy dispersive spectrometer. When the sintering temperature is 1500 °C, the CNAT and CYAT ceramics have the best microwave dielectric properties with εr = 19.2, Q × f = 74924 GHz, τf = ?1.21 ppm/°C and εr = 17.5, Q × f = 27440 GHz, τf = ?5.79 ppm/°C, respectively. And the best microwave dielectric properties of εr = 17.5, Q × f = 22568 GHz, τf = ?14.69 ppm/°C were obtained for the CLAT ceramic sintered at 1525 °C. The reaction sintering method provides a low-cost, economical and straightforward method for the preparation of the Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics, which has promising potential for application.  相似文献   

9.
Ba(Zr0.2Ti0.8)O3 (BZT20) ceramics were prepared by spark plasma sintering (SPS) and conventional sintering. The dynamic field-induced displacement and small-signal remnant piezoelectric constant measured by a resonant–antiresonant frequency method were evaluated. By normal sintering, the density, grain size, and dielectric constant of the ceramics increased with sintering temperature. The BZT20 ceramics prepared by SPS were characterized by linear field-induced strain. In response to the application of post-annealing at 1300 °C, BZT20 ceramics exhibited linear strain loop and high field-induced strain corresponding to dynamic strain/field d33 at 20 kV/cm of 290 pm/V. The remnant piezoelectric properties of the BZT20 ceramics were found to largely depend on the preparation conditions, including the sintering temperature and annealing temperature. The BZT20 ceramics prepared by SPS and post-annealed at 1300 °C showed Qm and kp values of 325 and 25.1 (%), respectively.  相似文献   

10.
Recently, BaO–Nd2O3–TiO2 systems are widely studied for microwave applications because of their high dielectric constant and high quality factor. However, pure BaNd2Ti4O12 ceramics without additives have to be sintered above 1300 °C to achieve densification. Copper oxide has been known as a good sintering aid for electronic ceramics and less reactive toward silver. We have introduced the CuO into BaNd2Ti4O12 by modifying the surface of BaNd2Ti4O12 by CuO thin layer on the calcined powder instead of mixing CuO directly with BaNd2Ti4O12 powder. The process reduces the amount of sintering aid and minimized the negative impact of sintering aid on dielectric properties such as quality factor. The CuO precursor solution of Cu(CH3COO)2, Cu(NO3)2 and CuSO4, were used to prepare CuO thin layer. They were investigated individually to determine their effects on the densification, crystalline structure, microstructure and microwave dielectric properties of BaNd2Ti4O12. The CuSO4 coated BaNd2Ti4O12 sintered at 1150 °C has exhibited better dielectric properties than those of CuO doped BaNd2Ti4O12 (k, 62.5 versus 61.2; Q × f, 11,500 GHz versus 10,500 GHz). The thin layer dopant coating process has been found to be a very effective way to lower ceramic sintering temperature without scarifying its dielectric properties.  相似文献   

11.
《Ceramics International》2016,42(5):5830-5841
The effect of CuO addition on magnetic and electrical properties of Sr2Bi4Ti5O18 (SBT) lead-free bismuth layered structure ferroelectric ceramics have been studied and reported. Interestingly, the prepared samples exhibit multiferroic behavior with the coexistence of magnetic and ferroelectric phase transition temperature. Magnetic phase transition with Neel׳s temperature (TN) of 657 K is observed at 0.75 mol% of CuO added SBT ceramics, which is higher than the well known multiferroic BiFeO3 (643 K) and the ferroelectric phase transition with Curie temperature (TC) of 587 K is observed at 1 mol% of CuO added SBT ceramics, which is relatively higher than the reported pure SBT ceramics (558 K). Further, the electrical properties such as dielectric, ferroelectric, piezoelectric, leakage current density characteristics and optical properties were investigated as a function of x (x=0, 0.25, 0.5, 0.75 and 1 mol%). Presence of strong magnetic super-exchange interactions in CuO and the creation of oxygen vacancies play a vital role in the enhancement of magnetic and electrical properties of CuO doped SBT ceramics. Moreover, the present results indicate that, small amount (0.25 mol%) of CuO addition in SBT ceramics enhances the electrical properties significantly and vice versa, large amount (0.75 mol%) of CuO addition enhances the magnetic properties. Thus, the presence of magneto-electric coupling effect was observed in CuO doped Sr2Bi4Ti5O18 ferroelectric ceramics.  相似文献   

12.
Cerium-doped lutetium oxyorthosilicate (Lu2SiO5:Ce, LSO:Ce) slurry with 35 vol.% solid content and viscosity of 70 mPa · $ \cdot $s (at a shear rate of 4 s–1) was prepared via a 24-h ball milling for the powder calcined at 1200°C and adding ammonium polyacrylate of 0.2 wt.%. Textured LSO:Ce ceramics were fabricated via slip casting in a vertical magnetic field and subsequently pressureless sintering of 1650°C and hot isostatic pressing. The maximum Lotgering factor f and relative density of the textured ceramics were 0.48% and 98.8%, respectively. Effects of grain size, dispersant, viscosity of slurry, and magnetic flux density on the grain orientation of LSO:Ce ceramics were systematically investigated. Based on the spatial state of grains, we proposed the rotation rule that LSO:Ce grains with or without space constraints in the slurry align along a and c-axis under the induction of a strong magnetic field.  相似文献   

13.
《Ceramics International》2016,42(3):4221-4227
Spark plasma sintering (SPS) is a powerful technique to produce fine grain dense ferrite at low temperature. This work was undertaken to study the effect of sintering temperature on the densification, microstructures and magnetic properties of magnesium ferrite (MgFe2O4). MgFe2O4 nanoparticles were synthesized via sol–gel self-combustion method. The powders were pressed into pellets which were sintered by spark plasma sintering at 700–900 °C for 5 min under 40 MPa. A densification of 95% of the theoretical density of Mg ferrite was achieved in the spark plasma sintered (SPSed) ceramics. The density, grain size and saturation magnetization of SPSed ceramics were found to increase with an increase in sintering temperature. Infrared (IR) spectra exhibit two important vibration bands of tetrahedral and octahedral metal-oxygen sites. The investigations of microstructures and magnetic properties reveal that the unique sintering mechanism in the SPS process is responsible for the enhancement of magnetic properties of SPSed compacts.  相似文献   

14.
The thermally-stimulated relaxation of defects in La,Al co-substituted (Ba,Sr)La4Ti4O15 dielectric ceramics with hexagonal perovskite structure were investigated systematically with the thermally stimulated depolarization current (TSDC) measurements. The ion substitution decreased the lattice parameters and the bond lengths of the cations and O2−. TSDC spectra indicated the main extrinsic defects in the ceramics were oxygen vacancies and the concentration of oxygen vacancies decreased with the increasing ion substitutions, which was derived from the decrease in the lattice parameters. The terahertz time-domain spectra indicated the damping factor of lattice vibration was reduced with the decline of the concentration of oxygen vacancies, which decreased the microwave/terahertz dielectric loss. High-performance (Ba0.2Sr0.8)0.75La4.25Ti3.75Al0.25O15 (εr = 43.9, Q × f = 84300 GHz, τf = -18.0 ppm/°C) ceramics were obtained. The correlations between crystal structures, defect behaviors and dielectric properties discussed in this work could provide guidance for the modification of microwave dielectric ceramics.  相似文献   

15.
The structure and microwave dielectric properties of Sr2(Ti1-xSnx)O4 ceramics were determined in the entire composition range of x?=?0–1.0. X-ray diffraction patterns and Raman spectra indicated a composition-induced onset of octahedral tilting at x?=?0.75, and the crystal structure transformed from tetragonal (I4/mmm) to orthorhombic (Pccn). An obvious change of grain morphology was observed in the phase transformation region as well. The variations of the microwave dielectric properties with composition were systematically investigated and the effect of octahedral tilting on the evolution of τf value was emphasized. Moreover, the relationship between τε and tolerance factor of the present ceramics was revealed and compared with the empirical rule in perovskite structure. The role of tolerance factor in designing the materials with required performance was highlighted.  相似文献   

16.
The bismuth layer-structured ferroelectrics (BLSF) are promising high-temperature piezoelectric materials, in which large piezoelectricity, good thermal stability and high electrical resistivity are desired. Here highly textured CaBi4Ti4O15 BLSF ceramics with orientation factor of 82% have been fabricated by spark plasma sintering technique. The piezoelectric coefficient d33 is significantly enhanced by 250%, from 7.2 pC/N for the texture-less sample to 25.3 pC/N for the textured one, accompanied by a high Curie temperature TC= 788 °C. The variation of d33 is below 5% in the temperature range of 25–500 °C, showing excellent thermal stability. The textured sample exhibits high electrical resistivity ρ = 2.1 × 1011 Ω·cm, an order of magnitude larger than that of the texture-less sample. At the temperature as high as 500 °C, the textured sample still maintains excellent electrical properties of d33 = 24.2 pC/N, tanδ = 9.9% and ρ = 2.7 × 106 Ω·cm, suggesting that the textured CaBi4Ti4O15 ceramics could be a potential candidate for high-temperature piezoelectric sensor or detector applications.  相似文献   

17.
Textured Bi5Ti3FeO15 (BTFO) ceramics were prepared by molten salt synthesis at 850 °C followed by plasma activated sintering at 800 °C. The structure and the anisotropic electrical and magnetic properties of the ceramics were investigated. The textured BTFO ceramics exhibited [001] preferred orientation with a high degree of texture fraction (Lotgering factor is 0.82), as confirmed from XRD patterns, FE-SEM and TEM micrographs. The anisotropic dielectric relaxation and conduction characteristics along the parallel and perpendicular directions were investigated using the dielectric and impedance spectroscopies. The grain boundary along the parallel direction had a similar value of capacitance to that of grains, whereas the grain boundary along the perpendicular direction dominated the resistive component. The magnetic performance along the perpendicular direction (Hc  32.5 Oe) was better than that along the parallel direction (Hc  17.6 Oe). These results could be useful for enhancing the electrical and magnetic properties of BTFO by texturization.  相似文献   

18.
用固相法研究了钨离子(W6 )掺杂对铋层状钛酸铋钙镧[Ca0.7La0.3Bi4(Ti1-xWx)4O15,CLBTWx]陶瓷的铁电性能、介电性能和压电性能的影响,得到了W6 掺量与铋层状CLBTWx陶瓷性能的关系.用X射线衍射和扫描电镜研究了W6 掺量对铋层状CLBTWx陶瓷微观结构和物相的影响,探讨了W6 掺杂改性的机理.结果表明:随着W6 掺量的增加,CLBTWx陶瓷的介电常数(ε)先增大后减小;介质损耗(tanδ)先减小后增大;压电应变常数(d33)先增大后减小;剩余极化强度(Pr)先增大后减小然后再增大再减小;矫顽场(Ec)变化规律与Pr的相同.当W6 掺量为0.025mol时,可得到综合性能好的无铅铋层状CLBTWx陶瓷,其烧结温度为1 120~1 140℃时,CLBTWx陶瓷的ε=183.15;tanδ=0.00446;d33=14×10-12C/N;2Pr=26.7μC/cm2;2Ec=220kV/cm.该类材料适合于制备铁电随机存取存储器和高温高频压电器件.W6 掺杂从生成钙空位或铋空位、形成焦绿石相、促进陶瓷致密化、偏析晶界影响陶瓷晶粒的均匀生长等方面来影响铋层状CLBTWx陶瓷性能和结构.  相似文献   

19.
Significantly enhanced breakdown field of 24.52 kV cm?1 as well as noteworthy nonlinear coefficient of 8.11 and low dielectric loss of 0.077 were obtained in Ca0.6Sr0.4Cu3Ti4O12 ceramic. It was proved from impedance spectra that improved breakdown field was attributed to enhanced grain boundary resistance and elevated Schottky barrier height, which was further found resulting from reduced donor densities in C-V measurements. In addition, it was found that the activation energy originated from oxygen vacancies was increased, indicating the generation of oxygen vacancies was suppressed. Since oxygen vacancies acted as donors in depletion layers, it is reasonable to deduce that the reduced donor density was mainly ascribed to the decreased oxygen vacancies. In conclusion, maximum integrated action of strong solid solution effect and weak Sr-stretching effect was achieved when Sr/Ca ratio is 40/60, leading to greatly elevated potential barrier height and enhanced breakdown field consequently.  相似文献   

20.
《Ceramics International》2022,48(11):15785-15790
Lithium borates are promising materials for thermal neutron detection. However, a strong tendency of borates for glass transformation can lower the detection efficiency of some luminescence centres. Here, we describe the synthesis of well-crystalline translucent borate ceramics. The precursor powder of undoped LiSr4(BO3)3 was prepared using a wet homogenization method and then densified to ceramic pellets at different sintering temperatures using SPS. As the sintering temperature increased, the degree of densification and crystallite connectivity improved, rendering the prepared pellets translucent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号