首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用7S形成纤维聚合结构的制备条件,研究低p H条件下长时间热处理对大豆蛋白7S和11S(包括酸性亚基和碱性亚基)乳化性和起泡性的影响。结果发现,低p H条件下长时间热处理的聚合手段,可以显著(p<0.05)改善不同大豆蛋白组分的起泡性,但对乳化性没有明显的改善作用,甚至对乳化稳定性有降低作用,这种改善程度与是否形成纤维聚合结构无关。与p H7.0条件下的热处理手段相比,低p H条件下长时间热处理的聚合手段能够使大豆蛋白7S和11S表面疏水性显著增加,这种特殊的结构变化更有力于提高起泡性能。因此,在低p H条件下长时间热处理后,7S和11S具有较高的表面疏水性和较好的起泡性能。   相似文献   

2.
分析了不同pH下大豆分离蛋白溶液拉曼光谱,结果表明:随着pH的增大,α-螺旋结构含量增加,无规卷曲结构含量降低,色氨酸残基由"埋藏式"逐渐转变为"暴露式"。在所测定的pH范围内(pH6.5~9.0)大豆分离蛋白的酪氨酸残基趋向于"暴露式"。pH对二硫键的构型的改变则表现出一种非线性改变趋势。  相似文献   

3.
The present study investigates the gelation mechanisms of a canola protein isolate (CPI) as a function of a pH (3.0–9.0), and compares it to that of a commercial soy protein isolate (SPI). A rheological investigation found that CPI was non-gelling at pH 3.0, and then formed a gel with increasing strength as pH was raised from pH 5.0 to 9.0. In contrast, the commercial SPI ingredient was found to be non-gelling at pH 9.0, but formed the strongest networks at pH 5.0 near its isoelectric point (pI = 4.6). Denaturation temperature as determined by differential scanning calorimetry were found to occur at ~ 78 °C for CPI at pH 5.0, then shifted to higher temperatures (~ 87 °C) at pH 7.0/9.0, whereas detection of SPI denaturation could not be obtained due to instrument sensitivity. Gelling temperatures were similar for both CPI and SPI (~ 82–86 °C) at all pHs, with the exception of SPI at pH 5.0 (~ 46 °C). Overall CPI networks were stronger than SPI, since the latter had weaker inter- and intramolecular junction zones. Confocal laser scanning microscopy images indicated that CPI gels became denser with lower lacunarity values as pH increased from 3.0 to 9.0. Moreover, the fractal dimension of CPI gels was found to increase from ~ 1.5-1.6 to ~ 1.8 as pH increased from 5.0/7.0 to 9.0, respectively suggesting diffusion-limited cluster-cluster aggregation. Images of SPI networks were not concurrent with fractal analysis under the conditions examined. Despite CPI having excellent gelling properties that are comparable to SPI, its need for alkaline pH conditions will limit its applicability in foods.  相似文献   

4.
pH为中性的大豆分离蛋白膜的制备及特性   总被引:3,自引:0,他引:3  
以大豆分离蛋白、甘油、阿魏酸为组成成分的成膜溶液调pH为中性,热处理后铺板干燥,揭膜,在相对湿度为52%的环境下平衡48h后测定膜的抗拉强度、断裂伸长率、颜色等。结果表明,阿魏酸的添加方法和添加量对膜的这些特性都有显著影响;阿魏酸的添加可显著增加膜的拉伸张力(20.2%~34.5%)和断裂伸长率(62.5%~94.3%),但也使膜的颜色变深;阿魏酸使pH为中性的大豆分离膜的机械性能可与通常在pH9或以上制备的这类膜相媲美,这使大豆分离蛋白膜有了更广泛的潜在应用前景。   相似文献   

5.
Soy protein isolates (SPI) may present different isoflavone profiles and contents, depending on processing conditions. In the present work, seven different SPI, resulting from changes in the processing steps, were obtained. The best parameters for obtaining isoflavone-richer SPI were: extraction at pH 9 and temperature of 55 °C, acid precipitation performed at pH 4.5, acid-washing of the precipitate and mild centrifugation conditions for the separation of acid-precipitated proteins. Isoflavones were soluble in aqueous solution in the pH range 2–10 (73–93% of the amount solubilized in 80% methanol). The profile of isoflavones was dependent on the temperature used for the aqueous extraction. Temperatures below 50 °C caused hydrolysis of β-glucosides with increase of aglucones, by endogenous β-glucosidase activity.  相似文献   

6.
Extrusion of soy protein with gelatin and sugars at low moisture content   总被引:3,自引:0,他引:3  
Soy protein-based materials modified with gelatin, lactose and sucrose were prepared by extrusion at low moisture content. The effect of composition on the extrusion parameters was investigated and specific mechanical energy (SME) was measured as an indication of extrusion processability, thus providing good characterization of the extrusion process in order to make it highly energy efficient and cost effective. Water content was the most important factor on the extrusion parameters and product properties. The incorporation of gelatin increased SME and the product obtained at the extruder die was not continuous. However, when lactose was added, SME decreased and the color of the product changed due to Maillard reaction. This reaction could be analyzed by Fourier transformed infrared spectroscopy (FTIR) where the changes of the amide I and amide II bands reflected that hydroxyl groups in sugars and amino groups in soy protein isolate (SPI) were consumed during extrusion. These results are in good agreement with total soluble matter (TSM) values, which were lower for mixtures with lactose than sucrose due to a higher degree of Maillard reaction. Moreover, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results also showed the influence of Maillard reaction, which lead to more ordered and compact structures, respectively.  相似文献   

7.
Soy protein isolates (SPIs) treated with sodium sulphite (Na2SO3) under low temperature (50 °C) extrusion were investigated to create a system where the disulphide bonds were destroyed. The physicochemical properties of the extrudates were characterised after the addition of 0.0%, 1.5% and 3.0% (w/w) Na2SO3. Under these conditions, free sulfhydryl content significantly increased (from 98.46 to 449.64 μmol g−1), specific mechanical energy during extrusion significantly increased (from 426.91 to 593.39 kJ kg−1), degradation temperature reduced (from 315.7 to 302.0 °C), protein solubility of the water extraction increased incrementally (from 5.41% to 20.17%) and water absorption capacity decreased (from 3.51% to 2.69%). Moreover, the addition of Na2SO3 caused a blue shift in the tryptophan fluorescence spectra of soluble SPI. These results suggest that Na2SO3 breaks disulphide bonds in SPI, which accelerates protein molecule denaturation to promote peptide disentanglement; consequently, SPI become more hydrophobic and less thermally stable.  相似文献   

8.
以市场上销售的3种大豆分离蛋白以及酪蛋白酸钠为原料,比较了它们的乳化性及乳化稳定性,起泡性及起泡稳定性,表面张力,临界胶束浓度(CMC)等表面活性性质.结果表明,不同厂家的大豆分离蛋白乳化性及乳化稳定性差异较大,起泡性及泡沫稳定性存在显著性的差异,表面张力与临界胶束浓度(CMC)相差不大.分析结果有助于为不同食品加工原料的选择提供依据.  相似文献   

9.
The effects of substituting 1.5% of the meat proteins with low gelling soy protein isolate (LGS), high gelling soy protein isolate (HGS), native whey protein isolate (NWP), and preheated whey protein isolate (PWP) were compared at varying levels of proteins (12, 13 and 14%), with all meat control batters prepared with canola oil. Cooking losses were lower for all the non-meat protein treatments compared to the all meat controls. When raising the protein level from 12 to 14%, cooking losses increased in all treatments except for the NWP treatments. Using LGS increased emulsification and resulted in a more stable meat batters at the 13 and 14% protein treatments. Textural profile analysis results showed that elevating protein level increased hardness and cohesiveness. The highest hardness values were obtained for the PWP treatments and the lowest for the HGS, indicating a strong non-meat protein effect on texture modification. Non-meat protein addition resulted in lighter and less red products (i.e., lower red meat content) compared to the all meat controls; color affected by non-meat protein type. Light microscopy revealed that non-meat proteins decreased the frequency of fat globules' agglomeration and protein aggregation. The whey protein preparations and HGS formed distinct “islands” within the meat batters' matrices, which appeared to interact with the meat protein matrix.  相似文献   

10.
Soy protein isolate (SPI) fractions were produced using two different pore size microfiltration membranes. Microfiltration was carried out on SPI produced by isoelectric precipitation of a crude protein extract. Five fractions were obtained: two retentates and two permeates from the two membranes plus an intermediate fraction obtained as the retentate on the small‐pore‐size membrane using the permeate from the larger‐pore‐size membrane. Emulsions stabilised by the retentate fractions exhibited higher values (P < 0.01) of emulsion stability index (ESI) and emulsifying activity index (EAI) than those stabilised with fractions made from the permeates. The intermediate fraction gave intermediate ESI values, while the EAI values were not significantly different from those for SPI and one of the retentates. SDS‐PAGE profiles indicated that the fractions exhibiting high functionality in terms of ESI and EAI were also richer in 7S globulin soy protein subunits. © 2002 Society of Chemical Industry  相似文献   

11.
Soybean seeds with three different levels (low, intermediate and high) of isoflavones were processed to soy flour and soy protein isolates (SPIs) and developed into functional soy breads. The effect of factors involved in all steps of the process was investigated by tracking the composition and concentration of native forms of isoflavones. The total isoflavone contents were 8033.3, 10570.1 and 15169.0 nmol/g DM (dry matter) in the three soybeans; 13201.5, 20034.4 and 26014.3 nmol/g DM in defatted soy flours; 9113.2, 13274.6 and 17918.3 nmol/g DM in the SPI; 2782.7, 4081.4 and 5590.3 nmol/g DM in soy breads, respectively. The bread making processes did not affect the total isoflavone content, but changed glucosides/acetylglucosides to aglycones. Malonylglucosides were stable prior to baking but degraded to acetylglucosides and further to glucosides during baking. Our results provide critical information for the production of functional soy breads that contain varying amounts of soy isoflavones.  相似文献   

12.
Glycerol-plasticized soy protein isolate (SPI) based films were prepared by compression with the aim to obtain environmentally friendly materials for packaging applications. Previously to the hot-pressed step, the protein was dispersed in water, the pH was fixed to values higher, lower and at the isoelectric point of SPI (pH = 4.6), and the dispersion was freeze-dried. The effect of pH on physico-chemical properties has been explained using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermo-gravimetric analysis (TGA). The changes observed by FTIR in the intensity of the bands corresponding to the amide group showed that pH affected protein–glycerol interactions. Apart from pH effect, heat and pressure also affected the grade of denaturation of SPI shown by the disappearance of the DSC peak corresponding to 7S globulin. Mechanical properties were also evaluated and related to pH and storage time. Both tensile strength and elongation at break are higher at basic pHs, when the unfolding of protein seems to be optimum in order to interact with the plasticizer. Mechanical properties remained invariable after having been stored under specific conditions for two months. Preparation of SPI-based biofilms processed at different pHs by compression is an innovative study in this field, in which the most employed technique to prepare films has been casting.  相似文献   

13.
储藏条件对大豆分离蛋白溶解性的影响   总被引:1,自引:0,他引:1  
大豆分离蛋白被广泛应用于食品工业,但在贮运过程中其功能特性可能会发生变化。本研究将包装后的大豆分离蛋白(SPI)分别在RH80%、30℃,RH65%、25℃,RH55%、4℃,冷冻条件(RH90%,-18℃)和自然环境条件下储藏3个月,研究储藏环境、时间、包装条件对SPI溶解性的影响。结果表明,高湿条件(RH=80%,30℃)会加速SPI变性,促使溶解性随储藏时间的延长而下降;氮气能够提高SPI的溶解性,但是随储藏时间的延长溶解性仍会下降;在相同储藏条件和包装材料下,充气包装内气体比例为60%N2∶40%CO2,有利于提高或保持SPI的溶解性;冷冻条件能够使SPI改性,提高SPI的溶解性。  相似文献   

14.
首先对三种商用大豆分离蛋白粉的溶解性、氮溶解指数和二级结构进行了比较,选择大豆分离蛋白(样品1)作为后续优化实验的供试蛋白。采用Box-Behnken响应面法研究具有优良乳化活性的大豆蛋白水解产物的生产工艺参数。以胰蛋白酶、反应温度、反应时间和反应pH为影响因子,乳化活性为响应值,确定最优生产工艺条件为:胰蛋白酶添加量为2.72%,反应温度为40℃,反应时间为4.12h,反应pH为8.85时,大豆分离蛋白水解产物的最大乳化活性为22.57m2/g。   相似文献   

15.
为改善大豆分离蛋白膜的性能,利用碱性蛋白酶制备玉米醇溶蛋白酶解产物(ZH),通过转谷氨酰胺酶(TGase)催化大豆分离蛋白(SPI)与ZH发生交联反应,对反应条件进行了优化;通过控制反应时间得到4种修饰产物(分别为0 h-SPI/ZH、0.5 h-SPI/ZH、1 h-SPI/ZH、1.5 h-SPI/ZH),并对修饰产物制备的膜性能进行研究。结果表明:最佳的TGase催化SPI与ZH交联反应条件为SPI与ZH质量比3.5∶1、底物质量浓度40 mg/mL、pH 7.5、酶添加量10 U/g(以蛋白质质量计)、反应温度45℃、反应时间1.5 h;随着反应时间的延长,4种修饰产物制备的复合膜抗拉强度和不透明度增加,含水量、断裂伸长率和水蒸气透过率降低;与SPI膜相比,1.5 h-SPI/ZH制备的复合膜的抗拉强度增加了5.5%,含水量与水蒸气透过率分别下降了25.6%和32.2%,不透明度增加了114.2%。综上,采用TGase催化SPI与ZH发生交联,所制的复合膜综合品质较好,为SPI复合膜的开发提供了技术支持。  相似文献   

16.
Soy protein isolates (SPI) produced by combining electro-acidification and tangential ultrafiltration/diafiltration (UF/DF) (pH 6), were compared in terms of composition and proteins solubility with isolates produced by UF/DF (pH 9) and isoelectric precipitation (pH 4.5). Mineral and phosphorus (phytic acid) removal was enhanced for the SPI pH 6. Whey-like proteins (M.W. < 66 kDa) were also found in higher concentration for the SPI produced by membrane technologies. This difference in composition resulted in improved solubility characteristics for the SPI pH 6 by as high as 25% and 60%, when compared to the SPI pH 4.5 and SPI pH 9, respectively. Improvement in solubility was most important between pH 2 and 4.5. The quantity of H+ ions added to the soy protein extract (SPE) and SPI to reduce the pH from 9 to 4.5, during solubility measurement, was related to the degree of proteins aggregation, as determined by size-exclusion high-performance liquid chromatography, and at a lesser extent to their phytic acid content. For the pH range of 4.5 to 2, the degree of proteins aggregation alone determines the quantity of H+ ions added.Industrial relevanceSoy protein production is one of the major agricultural sectors of significant importance to North America and soy proteins represent 69% of global plant protein consumption in the world. Soy protein concentrates and isolates are produced at the industrial scale by isoelectric precipitation. This process has a high productivity, however, it also generates large volumes of effluent. The final products also have significant contents of minerals and of phytic acid, the latter of which is well known to decrease the proteins and minerals adsorption in the intestine.We were the first group to combine bipolar membrane electrodialysis (BMED) and ultrafiltration (UF) (dead-end) for the production of soy protein concentrates (Mondor, Ippersiel, Lamarche & Boye, 2004). The new approach resulted in a significant decrease of the volumes of effluent due to the use of BMED to adjust the pH of the extract prior to UF and by improving the protein washing step using diafiltration (DF). It was also shown that for the pH range 6–9, minerals and phytic acid removal was improved with a decrease in pH. In this work, we present the characteristics of a soy protein isolate with a low phytic acid/protein ratio (SPI pH 6) produced by BMED and tangential flow UF/DF applying an optimal VCR5, re-VCR 5 sequence at pH 6. The SPI pH 6 shows an improved solubility by as high as 25% and 60%, when compared to an isolate produced by isoelectric precipitation at pH 4.5 and to one produced by UF/DF at pH 9, respectively. Improvement in solubility was most important between pH 2 and 4.5 indicating that this isolate could be considered as a valuable ingredient for the formulation of fruit juice beverages or power juices, considering that the pH of these liquid food products is around 3.5.  相似文献   

17.
In this paper we reported that pea protein isolate (PPI) at pH 3.0 exhibits a novel Pickering stabilization for oil-in-water emulsions. At pH 3.0, most of the proteins in PPI were present in the nanoparticle form, with the hydrodynamic diameter of 134–165 nm depending on the concentration (c; 0.25–3.0 g/100 mL). For the emulsions formed at a specific oil fraction of 0.2, increasing the c from 0.25 to 3.0 g/100 mL resulted in a considerable reduction in the emulsion size, while their creaming stability progressively increased, and especially at c values higher than 2 g/100 mL, no creaming occurred even after storage of 20 days. Confocal laser scanning microscopy observations showed that increasing the c resulted in a progressive increase in extent of droplet flocculation, and at higher c values, a network consisting of flocculated droplets could be formed. The emulsions formed at c values above 1.0 g/100 mL exhibited extraordinary stability against coalescence. The flocculated droplet network formation was closely associated with the increased amount of adsorbed proteins at the interface. The results suggest that pea proteins exhibit a good potential to act as a kind of Pickering stabilizers for oil-in-water emulsions at acidic pHs.  相似文献   

18.
The structural, thermodynamic and functional properties of soy protein hydrolysate (SPH) modified by treatment at different pH values (3, 5, and 9 and pH 7 as control) followed by ultrasound treatment (240 W, 30 min) were investigated. The treatment of SPH at alkaline pH combined with ultrasound treatment resulted in a reduction in the particle size and turbidity, enhancement in the surface negative charge and disulfide bond (SS) content, and exposure of more surface sulfhydryl (SH) groups, resulting in increased surface hydrophobicity and fluorescence intensity compared to those of the samples treated at pH 3–7. In addition, the alkaline-treated samples were more structurally stable than those treated at other pH values, having higher denaturation temperatures and enthalpies; moreover, these samples had higher solubility and emulsifying and foaming capacities. In addition, ultrasound-assisted pH treatment altered the secondary and tertiary structures of SPH by altering the covalent and non-covalent interactions, although there was no effect on the molecular weight distribution of proteins. In conclusion, ultrasound-assisted pH treatment is an effective method to improve physicochemical properties of SPH for applications in the food industry.  相似文献   

19.
为了丰富水力空化技术在食品工业中的应用,本文通过涡流空化装置处理不同浓度的大豆分离蛋白(soy protein isolates,SPI)溶液,研究涡流空化对SPI黏度的影响。结果表明:不同浓度的SPI溶液经涡流空化处理后黏度均降低,其中SPI浓度越大,其黏度下降越明显;与未处理的SPI溶液相比,经空化后的SPI溶液黏度随温度变化不明显;浓度为70 g/L的SPI溶液经不同出口压力空化处理后,其黏度随转速增加而增加,与空化前变化趋势相反,其他浓度的SPI溶液空化前后均随转速的增加而增加;随着空化处理时间的延长,SPI溶液黏度持续降低,其中在处理10 min内,下降更明显。说明涡流空化可以降低SPI溶液黏度,有利于低黏度型的SPI广泛应用于碎肉食品生产中。   相似文献   

20.
Antimicrobial papers were prepared by coating paper with soy protein isolate (SPI) solution as inclusion matrix of carvacrol, an antimicrobial agent. Addition of carvacrol (30% w/w of SPI) to SPI solution (10% w/v) prepared at 25 °C induced soy protein aggregates and viscosity decrease. Heat treatment (50, 70, 90 °C) of SPI solutions and carvacrol addition improved homogeneity reduced particles size and increased viscosity of solutions. The aggregated structure of SPI in the presence of carvacrol at 25 °C may play the role of a trapping structure leading to low carvacrol losses during coating and drying process of paper (9.6% against 37% after heat treatment at 90 °C) and to lower release rates specially the first three days (0.04 g/m2/day and 0.31 g/m2/day when SPI coating solutions were prepared at 25 and 90 °C, respectively). Regardless of the heat treatments received by the SPI solutions, residual carvacrol quantities in the coated papers after 50 days ranged between 0.6 and 0.7 g/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号