首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The survival of probiotic microorganisms including Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus and Bifidobacterium spp. was evaluated in yoghurt and freeze-dried yoghurt after processing and storage. The effectiveness of microencapsulating probiotic organisms as well as adding cryoprotectants and prebiotics in improving their viability was also investigated. The viability of Bifidobacterium infantis 17930 and L. rhamnosus GG was reduced by 0.07 log, while that of L. casei 1520 and Bifidobacterium longum 1941 was reduced by 0.28 and 0.39 log, respectively. There was a 7% improvement in the viability of L. casei 1520 when cryoprotectant ‘Unipectine™ RS 150’ was added at 2.5% (w/v). The prebiotic ‘Raftilose®P95’ when added at 1.5% w/v to yoghurt improved the viability of the combined selected probiotic organisms by 1.42 log during four weeks of storage at 4 °C. Microencapsulation with alginate improved viability of combined selected probiotic organisms by 0.31 log in freeze-dried yoghurt stored at 21 °C.  相似文献   

2.
Cereals and cereal components can be used as fermentation substrates for probiotic organisms imparting prebiotic effects. Consumer interest in healthy functional foods has resulted in the need for food products with versatile health-benefiting properties. The conventional choice for probiotic food applications has been dairy-based products, but whole grain-based probiotic functional foods have debuted in Japan and Europe. In the US, pro- and prebiotics are mainly marketed as dietary supplements, but are moving towards inclusion in the diet as mainstream foods. Cereal constituents, such as wheat bran-based ingredients fermented with probiotics, would enhance consumer health with the benefits of probiotics, bran fiber, and healthful bioactive components.  相似文献   

3.
The growth and metabolism of two probiotic organisms (L. acidophilus LAFTI® L10 and Lactobacillus casei LAFTI® L26) and a regular yoghurt culture (L. delbrueckii ssp. bulgaricus Lb1466 and Streptococcus thermophilus St1342) were studied in yoghurt containing 0.5%, 1.0%, and 1.5% (w/v) of high amylose corn starch powder (Hi-maize®) or inulin. Viable cell counts of probiotic organisms, their metabolites and proteolytic activities, and viscosity of the yoghurts were determined during refrigerated storage for 28 d at 4 oC. In the presence of inulin, cultures showed better retention of viability (8.0 log cfu g−1) in comparison with that of Hi-maize, which had a reduction by one log cycle. Lower concentrations of 0.5–1.0% Hi-maize improved (P<0.05) the production of propionic acid and also increased proteolytic activity of probiotic organisms substantially. A greater release of free amino acids may have sustained better growth of the organisms in yoghurts. Supplementation with either Hi-maize or inulin increased the viscosity of probiotic yoghurts significantly (P<0.05).  相似文献   

4.
Fermented foods and beverages possess various nutritional and therapeutic properties. Lactic acid bacteria (LAB) play a major role in determining the positive health effects of fermented milks and related products. The L. acidophilus and Bifidobacteria spp are known for their use in probiotic dairy foods. Cultured products sold with any claim of health benefits should meet the criteria of suggested minimum number of more than 106 cfu/g at the time of consumption. Yoghurt is redefined as a probiotic carrier food. Several food powders like yoghurt powder and curd (dahi) powder are manufactured taking into consideration the number of organisms surviving in the product after drying. Such foods, beverages and powders are highly acceptable to consumers because of their flavor and aroma and high nutritive value. Antitumor activity is associated with the cell wall of starter bacteria and so the activity remains even after drying. Other health benefits of fermented milks include prevention of gastrointestinal infections, reduction of serum cholesterol levels and antimutagenic activity. The fermented products are recommended for consumption by lactose intolerant individuals and patients suffering from atherosclerosis. The formulation of fermented dietetic preparations and special products is an expanding research area. The health benefits, the technology of production of fermented milks and the kinetics of lactic acid fermentation in dairy products are reviewed here.  相似文献   

5.
Abstract: The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75%Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms. Practical Application: This is the first study reported on produce synbiotic yoghurt as a functional food for specified health uses contains bifidobacteria and M. pajang fibrous polysaccharides. M. pajang fibrous polysaccharides can be used as a prebiotic particularly in dairy products to increase the viability and activity of bifidobacteria which can be used as probiotic to exert health benefit to the human by yoghurt that is considered common use in society; thus, the benefits of synbiotic yoghurt are readily accessible to the member of society.  相似文献   

6.
The survival of Bifidobacterium bifidum BBI and Lactobacillus acidophilus LAI in reduced-fat (liquid) and full-fat (set) yoghurts produced with two commercial lactic starter cultures (SID and SISD) was investigated. The viability of the probiotic bacteria was also assayed in milk acidified with lactic acid at different pH values. Samples were stored at 5°C for up to 4 weeks. There was a great variability in the survival ability of the probiotic cultures in the two yoghurt types. L. acidophilus LAI demonstrated, in general, a lower resistance to the yoghurt environment than B. bifidum BBI. On the other hand, the full-fat yoghurt was a more inhibitory medium than the reduced-fat one, especially for B. bifidum BBI. Regarding the lactic starters used, the results showed that the culture SISD was clearly more inhibitory for both probiotic organisms than the culture SID. The loss of cell viability in yoghurt samples was different (higher in some cases and lower in others) from that due to lactic acid only. In general, pH values of 4.5 or lower jeopardised the cell viability of the probiotic organisms in yoghurt stored at 5°C. This work shows the importance of selecting a suitable combination of probiotic strains and starter cultures when different yoghurt types are formulated.  相似文献   

7.
Cheddar cheeses were produced with starter lactococci and Bifidobacterium longum 1941, B. lactis LAFTI® B94, Lactobacillus casei 279, Lb. paracasei LAFTI® L26, Lb. acidophilus 4962 or Lb. acidophilus LAFTI® L10 to study the survival of the probiotic bacteria and the influence of these organisms on proteolytic patterns and production of organic acid during ripening period of 6 months at 4 °C. All probiotic adjuncts survived the manufacturing process of Cheddar cheese at high levels without alteration to the cheese-making process. After 6 months of ripening, cheeses maintained the level of probiotic organisms at >8.0 log10 cfu g−1 with minimal effect on moisture, fat, protein and salt content. Acetic acid concentration was higher in cheeses with B. longum 1941, B. lactis LAFTI® B94, Lb. casei 279 and Lb. paracasei LAFTI® L26. Each probiotic organism influenced the proteolytic pattern of Cheddar cheese in different ways. Lb. casei 279 and Lb. paracasei LAFTI® L26 showed higher hydrolysis of casein. Higher concentrations of free amino acids (FAAs) were found in all probiotic cheeses. Although Bifidobacterium sp. was found to be weakly proteolytic, cheeses with the addition of those strains had highest concentration of FAAs. These data thus suggested that Lb. acidophilus 4962, Lb. casei 279, B. longum 1941, Lb. acidophilus LAFTI® L10, Lb. paracasei LAFTI® L26 and B. lactis LAFTI® B94 can be applied successfully in Cheddar cheese.  相似文献   

8.
BackgroundAlthough the consumption of processed foods is growing in overseas markets, the increased awareness of consumers to health and wellbeing in recent years has led to a decline in the growth of processed food sales in the Western market. The added pressure on the food manufacturing industry to increase the perceived healthiness of processed foods has opened up new market potential in the area of fortified processed foods, such as processed cheeses.Scope and approachThis review paper provides an overview of the current methodologies into the production of a processed cheese with added health benefits, including the use of probiotics and prebiotics, vitamin and mineral fortification and the addition of plant macromolecules.Key findings and conclusionsProcessed cheeses with increased health benefits have been of great interest to manufacturers, with reduced salt and reduced fat options commercially available. Although processed cheeses fortified with vitamins, mineral, probiotics and prebiotics are not as widespread, further work in these areas has been identified as a way to produce high value processed cheese products with added health benefits.  相似文献   

9.
The poor survival of probiotic bacteria added to yoghurts is mainly attributed to the low pH of the product environment. Since yeasts have the ability to metabolize organic acids, resulting in a decrease in acidity, the inclusion of yeasts as part of the normal microflora, in association with probiotic bacteria has been suggested with the intention to assure better survival of the probiotic organisms in bio-yoghurt. Furthermore, a commensalistic association between yeasts and lactic acid bacteria exists. In order to understand the potential impact of yeast on probiotic bacteria, it was firstly important to assess the ability of yeast isolates to grow and survive in yoghurt.Accordingly, four dairy-associated yeasts, Debaryomyces hansenii, Kluyveromyces marxianus, Yarrowia lipolytica and Issatchenkia orientalis, associated commonly with yoghurt were isolated and inoculated subsequently into yoghurt and related dairy products during processing. The survival and growth of the yeasts were monitored over a 4-week storage period, the normal time accepted as the shelf-life of yoghurts. pH, sugar utilization and the production of organic acids were determined on a regular basis during the shelf-life to evaluate the possible contribution of the yeasts towards the products. The yeast species were able to survive in bio-yoghurt reaching maximum counts exceeding 107 cfu g−1. Despite the inability of some species to utilize lactose, the yeast species utilized available organic acids, galactose and glucose derived from bacterial metabolism of the milk lactose, as well as possible free fatty acids or free amino acids present in the dairy products. Excessive gas and ethanol production initiated by some yeast species proved, however, to be major constraints.  相似文献   

10.
Owing to their health benefits, probiotics and prebiotics are nowadays widely used in yogurts and fermented milks, which are leader products of functional foods worldwide. The world market for functional foods has grown rapidly in the last three decades, with an estimated size in 2003 of ca US$ 33 billion, while the European market estimation exceeded US$ 2 billion in the same year. However, the production of probiotics and prebiotics at industrial scale faces several challenges, including the search for economical and abundant raw materials for prebiotic production, the low-cost production of probiotics and the improvement of probiotic viability after storage or during the manufacturing process of the functional food. In this review, functional foods based on probiotics and prebiotics are introduced as a key biotechnological field with tremendous potential for innovation. A concise state of the art addressing the fundamentals and challenges for the development of new probiotic- and prebiotic-based foods is presented, the niches for future research being clearly identified and discussed.  相似文献   

11.
Fermented foods have a great significance since they provide and preserve large quantities of nutritious foods in a wide diversity of flavors, aromas and texture, which enrich the human diet. Originally fermented milks were developed as a means of preserving nutrients and are the most representatives of the category. The first aim of this study was to screen the effect of buckwheat flour and oat bran as prebiotics on the production of probiotic fiber-enriched fermented milks, by investigating the kinetics of acidification of buckwheat flour- and oat bran-supplemented milk fermented by Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their 1:1 combination named SYNBIO®. The probiotic strains viability, pH and sensory characteristics of the fermented fiber-enriched milk products, stored at 4 °C for 28 days were also monitored. The results showed that supplementation of whole milk with the tested probiotic strains and the two vegetable substrates results in a significant faster lowering of the pH. Also, the stability of L. rhamnosus IMC 501®, L. paracasei IMC 502® and SYNBIO® during storage at 4 °C for 28 days in buckwheat flour- and oat bran-supplemented samples was remarkably enhanced. The second aim of the study was to develop a new synbiotic product using the best combination of probiotics and prebiotics by promoting better growth and survival and be acceptable to the consumers with high concentration of probiotic strain. This new product was used to conduct a human feeding trial to validate the fermented milk as a carrier for transporting bacterial cells into the human gastrointestinal tract. The probiotic strains were recovered from fecal samples in 40 out of 40 volunteers fed for 4 weeks one portion per day of synbiotic fermented milk carrying about 109 viable cells.  相似文献   

12.
Probiotic bacteria: selective enumeration and survival in dairy foods   总被引:43,自引:0,他引:43  
A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus, Bifidobacterium spp., and Lactobacillus casei. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. However, studies have shown low viability of probiotics in market preparations. In order to assess viability of probiotic bacteria, it is important to have a working method for selective enumeration of these probiotic bacteria. Viability of probiotic bacteria is important in order to provide health benefits. Viability of probiotic bacteria can be improved by appropriate selection of acid and bile resistant strains, use of oxygen impermeable containers, two-step fermentation, micro-encapsulation, stress adaptation, incorporation of micronutrients such as peptides and amino acids and by sonication of yogurt bacteria. This review will cover selective enumeration and survival of probiotic bacteria in dairy foods.  相似文献   

13.
《International Dairy Journal》2006,16(10):1181-1189
The viability of Lactobacillus acidophilus LAFTI® L10, Bifidobacterium lactis LAFTI® B94, and L. paracasei LAFTI® L26 and their proteolytic activities were assessed in yoghurt at different termination pH of 4.45, 4.50, 4.55, and 4.60 in the presence of L. delbrueckii ssp. bulgaricus Lb1466 and Streptococcus thermophilus St1342 during 28 days of storage at 4 °C. All strains achieved the recommended level of 6.00 log cfu g−1 of the product with L. acidophilus LAFTI® L10 and L. paracasei LAFTI® L26 exceeding the number to 8.00 and 7.00 log cfu g−1, respectively. Lactobacilli strains showed a good cellular stability maintaining constant concentration throughout storage period regardless of termination pH. On the other hand, the cell counts of B. lactis LAFTI® B94 decreased by one log cycle at the end of storage. The presence of probiotic organisms enhanced proteolysis significantly in comparison with the control batch containing L. delbrueckii ssp. bulgaricus Lb1466 and S. thermophilus St1342 only. The proteolytic activity varied due to termination pH, but also appeared to be strain related. The increased proteolysis improved survival of L. delbrueckii ssp. bulgaricus Lb1466 during storage resulting in lowering of pH and production of higher levels of organic acids, which might have caused the low cell counts for B. lactis LAFTI® B94.  相似文献   

14.
This study compared viable counts of Streptococcus thermophilus (starter) and Lactobacillus helveticus R0052 (probiotic), as a function of two manufacturing processes of Greek-style (GS) yoghurt: centrifugation of a curd (GS-CF process) or ultrafiltration of milk prior to fermentation (GS-UF process). Fresh GS-UF and GS-CF yoghurts had between 3 and 7 times higher counts of Lb. helveticus R0052 and S. thermophilus than the regular stirred yoghurt (Control). Strain R0052 was three times more stable in the GS-CF yoghurt than in the Control over the 44 d storage period. The highest lactose content (44 g L−1) was obtained in the Control, while 60% less was obtained in the GS-UF yoghurt; the opposite trend was observed for lactic acid and galactose. Free amino acid levels were 33% higher in the GS products. GS yoghurt can be 10 times better than traditional yoghurt to deliver probiotic bacteria, as a function of the process used.  相似文献   

15.
《Food microbiology》2001,18(3):231-238
Bacillus cereus is an aerobic sporeformer commonly found in raw and processed foods. Foodborne illnesses associated with this pathogen are caused primarily by consumption of cooked foods with inadequate refrigeration. Mannitol-egg yolk-polymyxin (MYP) agar is widely used for isolation and enumeration of the pathogen. In the present study, a new selective medium, which contains a chromogenic substrate (5-bromo-4-chloro-3-indoxyl- myo -inositol-1-phosphate) for the detection of phosphatidylinositol-specific phospholipase C in B. cereus/B. thuringiensis organisms, was evaluated and compared to MYP. Twenty B. cereus strains, four B. thuringiensis strains, 95 other Gram-positive and 14 Gram-negative organisms were examined on BCM®B. cereus/B. thuringiensis (BioSynth) and MYP agar. Only B. cereus and B. thuringiensis formed large (2–7 mm), turquoise, flat colonies±turquoise halos on BCM®after incubation for 24 h at 35°C, while other Bacillus spp. formed white, 1–2 mm colonies or were inhibited. Some Listeria strains formed <1-mm colonies, white or turquoise, on the medium. Of the Gram-positive non- B. cereus/B. thuringiensis organisms tested, growth of >50% was inhibited on BCM®, compared to <1% on MYP. No significant difference (P>0·05) was observed on the two media in the recovery of B. cereus strains from foods inoculated or naturally contaminated with the organisms. However, colony enumeration and isolation were easier on BCM®than on MYP because of higher selectivity and formation of discrete, non-coalescing colonies. Ribotyping (Riboprinter®Microbial Identification System, Qualicon) of five randomly selected food isolates identified three B. cereus and two B. thuringiensis strains. Agar plates were stable for >3 months at 2–5°C.  相似文献   

16.
Survival of the microencapsulated probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, in stirred yoghurt from UHT- and conventionally treated milk during low temperature storage was investigated. The probiotic cells both as free cells and microencapsulated cells (in alginate beads coated with chitosan) were added into 20 g/100 g total solids stirred yoghurt from UHT-treated milk and 16 g/100 g total solids yoghurt from conventionally treated milk after 3.5 h of fermentation. The products were kept at 4 °C for 4 weeks. The survival of encapsulated probiotic bacteria was higher than free cells by approximately 1 log cycle. The number of probiotic bacteria was maintained above the recommended therapeutic minimum (107 cfu g−1) throughout the storage except for B. bifidum. The viabilities of probiotic bacteria in yoghurts from both UHT- and conventionally treated milks were not significantly (P>0.05) different.  相似文献   

17.
The physicochemical and rheological properties of yoghurt made from unstandardised unhomogenised buffalo milk were investigated during fermentation and 28 days of storage and compared to the properties of yoghurt made from homogenised fortified bovine milk. A number of differences observed in the gel network can be linked to differences in milk composition. The microstructure of buffalo yoghurt, as assessed by confocal laser scanning microscopy (CLSM) and cryo scanning electron microscopy (cryo-SEM), was interrupted by large fat globules and featured more serum pores. These fat globules have a lower surface area and bind less protein than the homogenised fat globules in bovine milk. These microstructural differences likely lead to the higher syneresis observed for buffalo yoghurt with an increase from 17.4 % (w/w) to 19.7 % (w/w) in the weight of whey generated at days 1 and 28 of the storage. The higher concentration of total calcium in buffalo milk resulted in the release of more ionic calcium during fermentation. Gelation was also slower but the strength of the two gels was similar due to similar protein and total solids concentrations. Buffalo yoghurt was more viscous, less able to recover from deformation and less Newtonian than bovine yoghurt with a thixotropy of 3,035 Pa.s?1 measured for buffalo yoghurt at the end of the storage, at least four times higher than the thixotropy of bovine yoghurt. While the titratable acidity, lactose consumption and changes in organic acid concentrations were similar, differences were recorded in the viability of probiotic bacteria with a lower viability of Lactobacillus acidophilus of 5.17 log (CFU/g) recorded for buffalo yoghurt at day 28 of the storage. Our results show that factors other than the total solids content and protein concentration of milk affect the structural properties of yoghurt. They also illustrate the physicochemical reasons why buffalo and bovine yoghurt are reported to have different sensory properties and provide insight into how compositional changes can be used to alter the microstructure and properties of dairy products.  相似文献   

18.
The influence of the addition of raffinose family oligosaccharides (RFOs) extracted from lupin seeds on the survival of Bifidobacterium lactis Bb-12 and Lactobacillus acidophilus La-5 in fermented milk during 21 days of storage in refrigerated conditions was studied. For this purpose, viability and metabolic activity (expressed as pH, lactic and acetic acid production and utilization of soluble carbohydrates) of probiotic bacteria were determined. Retention of viability of B. lactis Bb-12 and L. acidophilus La-5 was greater in fermented milk with RFOs. The pH of probiotic fermented milk at 21 days of storage was lower (4.27) compared with probiotic fermented milk with RFOs (4.37). The highest levels of lactic and acetic acid were produced in probiotic fermented milk without RFOs compared with probiotic fermented milk with RFOs during storage at 4 °C. Soluble carbohydrates were utilised in fermented milk with and without RFOs, respectively, for maintaining B. lactis Bb-12 and L. acidophilus populations during refrigerated storage. In conclusion, all these experiments provide convincing evidence that RFOs have beneficial effects on the survival of these probiotic cultures in dairy products. As a result, such stored dairy products containing both probiotics and prebiotics have synergistic actions in the promotion of health.  相似文献   

19.
The effect of addition of natural sugar substitutes (stevia, erythritol or xylitol) and prebiotics (oligofructose or polydextrose) on physicochemical characteristics, probiotic survival (Lactobacillus casei) and sensory acceptance of yoghurts during storage (7 °C, 28 days) was evaluated. Yoghurts with sucrose or sucralose were also prepared. Xylitol and sucralose added yoghurts had physicochemical characteristics and sensory acceptance similar to those of the product with sucrose. Xylitol was more efficient in maintenance of textural characteristics and probiotic survival in simulated gastrointestinal conditions (SGIC) than sucralose. Addition of erythritol and stevia changed the textural parameters, reduced acceptance and decreased probiotic survival in SGIC. Addition of oligofructose or polydextrose improved texture and increased probiotic survival but decreased flavour acceptance. All formulations could be considered probiotic products during shelf life (7 °C, 28 days) with counts higher than 107 cfu mL−1 in the product and 104 cfu mL−1 after SGIC.  相似文献   

20.
益生乳酸菌是一类能利用碳水化合物发酵产生大量乳酸,且对宿主有益的微生物。乳制品在人类膳食结构中占有十分重要的地位,随着消费者对乳品品质和健康要求的提升,具有各种健康功能的益生乳酸菌在乳品中的应用及相关加工技术和功能产品的研发日益受到关注。通过添加益生乳酸菌等活性因子获得功能性乳制品,是增强乳品健康功效的有效方法。本文综述了近年来有关益生乳酸菌在发酵乳、干酪、乳饮料、冰淇淋和奶粉等乳制品中的应用研究现状,重点介绍了益生乳酸菌发挥功能的主要代谢产物酶类和胞外多糖的应用研究,包括在不同乳制品中益生乳酸菌及其产物发挥的作用,常用的益生乳酸菌菌株种类,生产加工过程中存在的主要问题及解决方法,为益生乳酸菌在乳制品中的应用开发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号