首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we investigate the effect of annealing and nitrogen amount on electronic transport properties in n- and p-type-doped Ga0.68In0.32NyAs1 − y/GaAs quantum well (QW) structures with y = 0%, 0.9%, 1.2%, 1.7%. The samples are thermal annealed at 700°C for 60 and 600 s, and Hall effect measurements have been performed between 10 and 300 K. Drastic decrease is observed in the electron mobility of n-type N-containing samples due to the possible N-induced scattering mechanisms and increasing effect mass of the alloy. The temperature dependence of electron mobility has an almost temperature insensitive characteristic, whereas for p-type samples hole mobility is decreased drastically at T > 120 K. As N concentration is increased, the hole mobility also increased as a reason of decreasing lattice mismatch. Screening effect of N-related alloy scattering over phonon scattering in n-type samples may be the reason of the temperature-insensitive electron mobility. At low temperature regime, hole mobility is higher than electron mobility by a factor of 3 to 4. However, at high temperatures (T > 120 K), the mobility of p-type samples is restricted by the scattering of the optical phonons. Because the valance band discontinuity is smaller compared to the conduction band, thermionic transport of holes from QW to the barrier material, GaAs, also contributes to the mobility at high temperatures that results in a decrease in mobility. The hole mobility results of as-grown samples do not show a systematic behavior, while annealed samples do, depending on N concentration. Thermal annealing does not show a significant improvement of electron mobility.  相似文献   

2.
We report on the Mg-doped, indium-rich GaxIn1−xN (x < 30). In the undoped material, the intrinsic electron density is very high and as a result there is no detectable photoconductivity (PC) signal within the range of temperatures of 30 <T < 300 K. In the Mg-doped material however, where the conductivity is reduced, there is a strong PC spectrum with two prominent low-energy peaks at 0.65 and 1.0 eV and one broad high-energy peak at around 1.35 eV. The temperature dependence of the spectral photoconductivity under constant illumination intensity, at T > 150 K, is determined by the longitudinal-optical phonon scattering together with the thermal regeneration of non-equilibrium minority carriers from traps with an average depth of 103 ± 15 meV. This value is close to the Mg binding energy in GaInN. The complementary measurements of transient photoluminescence at liquid He temperatures give the e-A0 binding energy of approximately 100 meV. Furthermore, Hall measurements in the Mg-doped material also indicate an activated behaviour with an acceptor binding energy of 108 ± 20 meV.  相似文献   

3.
Novel fluffy Fe@α-Fe2O3 core-shell nanowires have been synthesized using the chemical reaction of ferrous sulfate and sodium borohydride, as well as the post-annealing process in air. The coercivity of the as-synthesized nanowires is above 684 Oe in the temperature range of 5 to 300 K, which is significantly higher than that of the bulk Fe (approximately 0.9 Oe). Through the annealing process in air, the coercivity and the exchange field are evidently improved. Both the coercivity and the exchange field increase with increasing annealing time (TA) and reach their maximum values of 1,042 and 78 Oe, respectively, at TA = 4 h. The magnetic measurements show that the effective anisotropy is increased with increasing the thickness of theα-Fe2O3 by annealing. The large values of coercivity and exchange field, as well as the high surface area to volume ratio, may make the fluffy Fe@α-Fe2O3 core-shell nanowire a promising candidate for the applications of the magnetic drug delivery, electrochemical energy storage, gas sensors, photocatalysis, and so forth.  相似文献   

4.
The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 − xInxNyAs1 − y/GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration of 32%. Micro-Raman measurements have been carried out using 532 and 758 nm lines of diode lasers, and the 1064 nm line of the Nd-YAG laser has been used for Fourier transform-Raman scattering measurements. Raman scattering measurements with different excitation sources have revealed that the excitation energy is the decisive mechanism on the nature of the Raman scattering spectrum. When the excitation energy is close to the electronic band gap energy of any constituent semiconductor materials in the sample, electronic transition dominates the spectrum, leading to a very broad peak. In the condition that the excitation energy is much higher than the band gap energy, only vibrational modes contribute to the Raman scattering spectrum of the samples. Line shapes of the Raman scattering spectrum with the 785 and 1064 nm lines of lasers have been observed to be very broad peaks, whose absolute peak energy values are in good agreement with the ones obtained from photoluminescence measurements. On the other hand, Raman scattering spectrum with the 532 nm line has exhibited only vibrational modes. As a complementary tool of Raman scattering measurements with the excitation source of 532 nm, which shows weak vibrational transitions, attenuated total reflectance infrared spectroscopy has been also carried out. The results exhibited that the nature of the Raman scattering spectrum is strongly excitation energy-dependent, and with suitable excitation energy, electronic and/or vibrational transitions can be investigated.  相似文献   

5.
The blue triangle nanosilver (BAgNP) sol was prepared by the two reducers of NaBH4 and H2O2. Using BAgNP as the precursor, a small spherical nanosilver (AgNP) sol in yellow was synthesized by addition of suitable amounts of X (X = Cl, Br, and I). The oxidization process of BAgNP to AgNP was studied in detail by resonance Rayleigh scattering (RRS), surface-enhanced Raman scattering (SERS), laser scattering, surface plasmon resonance (SPR) absorption, and microscope techniques. It has been observed that NaCl accelerated the oxidizing BAgNP to form AgNP, and an oxidizing mechanism and quasi-nanograting Raman-scattering enhanced mechanism were developed to explain the phenomena. Using the BAgNP sol as substrate and based on the catalysis of Ti(IV) on the BrO3 oxidizing safranine T (ST) molecular probe with a strong SERS peak at 1,535 cm−1, a new catalytic SERS quantitative method was developed for the determination of 1.0 to 100 ng/mL Ti, with a detection limit of 0.4 ng/mL.  相似文献   

6.
We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400 nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300 K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51 W/m · K at 300 K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52 W/m · K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300 K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices.  相似文献   

7.
Studies on interaction of graphene with radiation are important because of nanolithographic processes in graphene-based electronic devices and for space applications. Since the electronic properties of graphene are highly sensitive to the defects and number of layers in graphene sample, it is desirable to develop tools to engineer these two parameters. We report swift heavy ion (SHI) irradiation-induced annealing and purification effects in graphene films, similar to that observed in our studies on fullerenes and carbon nanotubes (CNTs). Raman studies after irradiation with 100-MeV Ag ions (fluences from 3 × 1010 to 1 × 1014 ions/cm2) show that the disorder parameter α, defined by ID/IG ratio, decreases at lower fluences but increases at higher fluences beyond 1 × 1012 ions/cm2. This indicates that SHI induces annealing effects at lower fluences. We also observe that the number of graphene layers is reduced at fluences higher than 1 × 1013 ions/cm2. Using inelastic thermal spike model calculations, we estimate a radius of 2.6 nm for ion track core surrounded by a halo extending up to 11.6 nm. The transient temperature above the melting point in the track core results in damage, whereas lower temperature in the track halo is responsible for annealing. The results suggest that SHI irradiation fluence may be used as one of the tools for defect annealing and manipulation of the number of graphene layers.

PACS

60.80.x; 81.05.ue  相似文献   

8.
Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm.

PACS

61.46. + w; 61.41.e; 81.15.Fg; 81.07.b  相似文献   

9.
One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and (0001¯) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with a = 3.24 Å, c = 5.20 Å, and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45 × 10−3 to 8.10 × 10−3 emu/g and approximately 2.22 × 10−7 to 2.190 × 10−7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has important implications for the design of advanced photonic, electronic, and magneto-optic nano devices.  相似文献   

10.
In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 1¯ 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.  相似文献   

11.
Surfaces of InP were bombarded by 1.9 keV Ar+ ions under normal incidence. The total accumulated ion fluence Φ the samples were exposed to was varied from 1 × 1017 cm−2 to 3 × 1018 cm−2, and ion fluxes f of (0.4 − 2) × 1014 cm−2 s−1 were used. The surface morphology resulting from these ion irradiations was examined by atomic force microscopy (AFM). Generally, nanodot structures are formed on the surface; their dimensions (diameter, height and separation), however, were found to depend critically on the specific bombardment conditions. As a function of ion fluence, the mean radius r, height h, and spacing l of the dots can be fitted by power-law dependences: r ∝ Φ0.40, h ∝ Φ0.48, and l ∝ Φ0.19. In terms of ion flux, there appears to exist a distinct threshold: below f ~ (1.3 ± 0.2) × 1014 cm−2 s−1, no ordering of the dots exists and their size is comparatively small; above that value of f, the height and radius of the dots becomes substantially larger (h ~ 40 nm and r ~ 50 nm). This finding possibly indicates that surface diffusion processes could be important. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that APT can provide analytical information on the composition of individual InP nanodots. By means of 3D APT data, the surface region of such nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of approximately 1 nm and amount to 1.3 to 1.7.  相似文献   

12.
Aligned ZnO nanowires with different lengths (1 to approximately 4 μm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc values of DSSC with ZnO nanowires length of 4.0 μm (4.8 mA/cm2 and 0.58 V) are smaller than those of DSSC with ZnO nanowires length of 3.0 μm (5.6 mA/cm2 and 0.62 V). It could be due to the increased length of ZnO nanowires also resulted in a decrease in the transmittance of ZnO nanowires thus reducing the incident light intensity on the N3 dye. Optimum power conversion efficiency (η) of 1.49% was obtained in a DSSC with the ZnO nanowires length of 3 μm.  相似文献   

13.
In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters.  相似文献   

14.
Growing Ga2O3 dielectric materials at a moderately low temperature is important for the further development of high-mobility III-V semiconductor-based nanoelectronics. Here, β-Ga2O3 nanowires are successfully synthesized at a relatively low temperature of 610°C by solid-source chemical vapor deposition employing GaAs powders as the source material, which is in a distinct contrast to the typical synthesis temperature of above 1,000°C as reported by other methods. In this work, the prepared β-Ga2O3 nanowires are mainly composed of Ga and O elements with an atomic ratio of approximately 2:3. Importantly, they are highly crystalline in the monoclinic structure with varied growth orientations in low-index planes. The bandgap of the β-Ga2O3 nanowires is determined to be 251 nm (approximately 4.94 eV), in good accordance with the literature. Also, electrical characterization reveals that the individual nanowire has a resistivity of up to 8.5 × 107 Ω cm, when fabricated in the configuration of parallel arrays, further indicating the promise of growing these highly insulating Ga2O3 materials in this III-V nanowire-compatible growth condition.

PACS

77.55.D; 61.46.Km; 78.40.Fy  相似文献   

15.
The growth of Al:ZnO nanorods on a silicon substrate using a low-temperature thermal evaporation method is reported. The samples were fabricated within a horizontal quartz tube under controlled supply of O2 gas where Zn and Al powders were previously mixed and heated at 700°C. This allows the reactant vapors to deposit onto the substrate placed vertically above the source materials. Both the undoped and doped samples were characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) measurements. It was observed that randomly oriented nanowires were formed with varying nanostructures as the dopant concentrations were increased from 0.6 at.% to 11.3 at.% with the appearance of ‘pencil-like’ shape at 2.4 at.%, measuring between 260 to 350 nm and 720 nm in diameter and length, respectively. The HRTEM images revealed nanorods fringes of 0.46 nm wide, an equivalent to the lattice constant of ZnO and correspond to the (0001) fringes with regard to the growth direction. The as-prepared Al:ZnO samples exhibited a strong UV emission band located at approximately 389 nm (E g  = 3.19 eV) with multiple other low intensity peaks appeared at wavelengths greater than 400 nm contributed by oxygen vacancies. The results showed the importance of Al doping that played an important role on the morphology and optical properties of ZnO nanostructures. This may led to potential nanodevices in sensor and biological applications.  相似文献   

16.
Multiferroic behavior of Bi4 − xNdxFeTi3O12 (0.0 ≤ × ≤ 0.25, × = 0.05) ceramic nanoparticles prepared through the egg-white method was investigated. The dielectric properties of the samples show normal behavior and are explained in the light of space charge polarization. Room temperature polarization-electric field (P-E) curves show that the samples are not saturated with maximum remanence polarization, Pr= 0.110 μC/cm2, and a relatively low coercive field, Ec = of 7.918 kV/cm, at an applied field of 1 kV/cm was observed for 5% Nd doping. The room temperature M-H hysteresis curve shows that the samples exhibit intrinsic antiferromagnetism with a weak ferromagnetism. These properties entitle the grown nanoparticles of BNFT as one of the few multiferroic materials that exhibit decent magnetization and electric polarization.  相似文献   

17.
Immiscible liquid-liquid interfaces provide unique double phase regions for the design and construction of nanoscale materials. Here, we reported Ag(I)-directed growth of metal-organic complex nanocrystals by using AgNO3 as a connector in the aqueous solution and bidentate ligand of 1,4-bis(9-O-dihydroquininyl)anthraquinone [(DHQ)2AQN] and its enantiomer of (DHQD)2AQN in the chloroform solutions as linkers. The Ag-(DHQ)2AQN and Ag-(DHQD)2AQN complex nanocrystals were formed at the liquid-liquid interfaces and characterized by using UV-vis absorption and fluorescence spectroscopy and X-ray photoelectron spectroscopy, as well as by using scanning electron microscopy. Screw-like nanocrystals were formed at the initial 30 min after the interfacial coordination reaction started, then they grew into nanorods after several days, and finally became cubic microcrystals after 2 weeks. The pure ligand showed two emission bands centered at about 363 and 522 nm in the methanol solution, the second one of which was quenched and shifted to about 470 nm in the Ag-complex nanocrystals. Two couples of reversible redox waves were recorded for the Ag-complex nanocrystals; one centered at about -0.25 V (vs. Ag/AgCl) was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag - (DHQ)2AQN+, and the other one centered at about 0.2 V was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag+ - (DHQ)2AQN.  相似文献   

18.
Polycrystalline Er-Sc silicates (Er x Sc2-x Si2O7 and Er x Sc2-x SiO5) were fabricated using multilayer nanostructured films of Er2O3/SiO2/Sc2O3 deposited on SiO2/Si substrates by RF sputtering and thermal annealing at high temperature. The films were characterized by synchrotron radiation grazing incidence X-ray diffraction, cross-sectional transmission electron microscopy, energy-dispersive X-ray spectroscopy, and micro-photoluminescence measurements. The Er-Sc silicate phase Er x Sc2-x Si2O7 is the dominant film, and Er and Sc are homogeneously distributed after thermal treatment because of the excess of oxygen from SiO2 interlayers. The Er concentration of 6.7 × 1021 atoms/cm3 was achieved due to the presence of Sc that dilutes the Er concentration and generates concentration quenching. During silicate formation, the erbium diffusion coefficient in the silicate phase is estimated to be 1 × 10-15 cm2/s at 1,250°C. The dominant Er x Sc2 - x Si2O7 layer shows a room-temperature photoluminescence peak at 1,537 nm with the full width at half maximum (FWHM) of 1.6 nm. The peak emission shift compared to that of the Y-Er silicate (where Y and Er have almost the same ionic radii) and the narrow FWHM are due to the small ionic radii of Sc3+ which enhance the crystal field strength affecting the optical properties of Er3+ ions located at the well-defined lattice sites of the Sc silicate. The Er-Sc silicate with narrow FWHM opens a promising way to prepare photonic crystal light-emitting devices.  相似文献   

19.
Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1.  相似文献   

20.
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号