首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

2.
The bifunctional catalyst 6′‐deoxy‐6′‐acylamino‐β‐isocupreidine ( 1 ) served both as a base to trigger the in situ generation of N‐sulfonylimine from readily available α‐amidosulfones and as a chiral nucleophile to initiate the enantioselective aza‐Morita–Baylis–Hillman (aza‐MBH) reaction. α‐Methylene‐β‐amino‐β‐alkyl carbonyl compounds, difficultly accessible previously, can now be synthesized in excellent yields and enantioselectivities.  相似文献   

3.
The first organocatalytic enantioselective aza‐Michael addition of purine bases to α,β‐unsaturated ketones has been developed, affording Michael adducts in moderate to high yields (up to 96% yield) and high to excellent enantioselectivities (up to >99% ee). A wide range of α,β‐unsaturated ketones including aliphatic and aromatic enones are tolerated in this process, generally demonstrating good reactivity, regioselectivity and enantioselectivity. The aromatic α,β‐unsaturated ketones showing quite low reactivity in the reported catalytic systems, were first successfully employed as Michael acceptors in this transformation, yielding high enantioselectivities (up to 94% ee). The utility of this method was also applied for the synthesis of enantioenriched non‐natural nucleoside analogues with potential biological activities.  相似文献   

4.
A highly chemo‐ and enantioselective organocatalytic cyclopropanation of α,β‐unsaturated aldehydes with bromomalonate and 2‐bromoacetoacetate esters is presented. The reaction is catalyzed by chiral amines and gives access to 2‐formylcyclopropanes in high yields and up to 99 % ee.  相似文献   

5.
The highly enantioselective organocatalytic domino aza‐Michael/aldol reaction is presented. The unprecedented, chiral amine‐catalyzed asymmetric domino reactions between 2‐aminobenzaldehydes and α,β‐unsaturated aldehydes proceed with excellent chemo‐ and enantioselectivity to give the corresponding pharmaceutically valuable 1,2‐dihydroquinolines derivatives in high yields with 90 to >99 % ee.  相似文献   

6.
The highly enantioselective reaction between in situ generated, Cbz‐protected azomethines and malonates in the presence of 150 mol % of potassium carbonate (50 % w/w) and 1 mol % of quinine‐derived quaternary ammonium bromides as phase‐transfer organocatalysts has been developed. This study reports a novel approach for the asymmetric Mannich‐type reaction and a wide range of azomethines, including those derived from enolizable aldehydes, is tolerated by the present system. The adducts, obtained in excellent yields with ee up to 98 %, are suitable precursors of optically pure β‐amino acids.  相似文献   

7.
The highly catalytic asymmetric α‐hydroxylation of 1‐tetralone‐derived β‐keto esters and β‐keto amides using tert‐butyl hydroperoxide (TBHP) as the oxidant was realized by a chiral N,N′‐dioxide‐magnesium ditriflate [Mg(OTf)2] complex. A series of corresponding chiral α‐hydroxy dicarbonyl compounds was obtained in excellent yields (up to 99%) with excellent enantioselectivities (up to 98% ee). The products were easily transformed into useful building blocks and the precursor of daunomycin was achieved in an asymmetric catalytic way for the first time.  相似文献   

8.
The benzylic substituted P,N ligands, diphosphinobenzyloxazolines, showed their high catalytic activity as well as asymmetric induction in the iridium‐catalyzed asymmetric hydrogenation of unfunctionalized alkenes, α,β‐unsaturated esters, allyl alcohols, α,β‐unsaturated ketones, and imines, providing the corresponding chiral products in high ee with high conversion.  相似文献   

9.
An organocatalytic Michael addition of protected 2‐amino‐1‐nitroethanes to α,β‐unsaturated aldehydes followed by treatment with TFA afforded 4‐substituted 3‐nitro‐1,2,3,4‐tetrahydropyridines with good diastereoselectivity and excellent enantioselectivity. Good yields were observed in the case of β‐aryl‐substituted α,β‐unsaturated aldehydes as the substrates, while moderate yields were obtained when β‐alkyl‐substituted α,β‐unsaturated aldehydes were used.  相似文献   

10.
An enantioselective aza‐Friedel–Crafts reaction of indoles with γ‐hydroxy‐γ‐lactams using a chiral phosphoric acid catalyst is reported. The approach described herein provides an efficient access to 5‐indolylpyrrolidinones in good to quantitative yields and excellent enantioselectivities (up to >99% ee). The results suggest that the reaction may proceed via N‐acyliminium intermediates associated with the chiral phosphoric acid anion.  相似文献   

11.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


12.
Compound 20 , a pseudoenantiomer of β‐isocupreidine (β‐ICD), was synthesized from quinine employing a Barton reaction of nitrosyl ester 13 and acid‐catalyzed cyclization of carbinol 18 as key steps. The Baylis–Hillman reaction of benzaldehyde, p‐nitrobenzaldehyde, and hydrocinnamaldehyde with 1,1,1,3,3,3‐hexafluoroisopropyl acrylate (HFIPA) using 20 as a chiral amine catalyst was found to give the corresponding S‐enriched adducts in high optical purity (>91% ee) in contrast to the β‐ICD‐catalyzed reaction which affords R‐enriched adducts. This result suggests that compound 20 can serve as an enantiocomplementary catalyst of β‐ICD in the asymmetric Baylis–Hillman reaction of aldehydes with HFIPA.  相似文献   

13.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

14.
The direct organocatalytic enantioselective epoxidation of α,β‐unsaturated aldehydes with different peroxides is presented. Proline, chiral pyrrolidine derivatives, and amino acid‐derived imidazolidinones catalyze the asymmetric epoxidation of α,β‐unsaturated aldehydes. In particular, protected commercially available α,α‐diphenyl‐ and α,α‐di(β‐naphthyl)‐2‐prolinols catalyze the asymmetric epoxidation reactions of α,β‐unsaturated aldehydes with high diastereo‐ and enantioselectivities to furnish the corresponding 2‐epoxy aldehydes in high yield with up to 97:3 dr and 98 % ee. The use of non‐toxic catalysts, water and hydrogen peroxide, urea hydroperoxide or sodium percarbonate as the oxygen sources could make this reaction environmentally benign. In addition, one‐pot direct organocatalytic asymmetric tandem epoxidation‐Wittig reactions are described. The reactions were highly diastereo‐ and enantioselective and provide a rapid access to 2,4‐diepoxy aldehydes. Moreover, a highly stereoselective one‐pot organocatalytic asymmetric cascade epoxidation‐Mannich reaction, which proceeds via the combination of iminium and enamine activation, is presented. The mechanism and stereochemistry of the amino acid‐ and chiral pyrrolidine‐catalyzed direct asymmetric epoxidation of α,β‐unsaturated aldehydes are also discussed.  相似文献   

15.
Highly modular chiral amino diol derivatives have been used as organocatalysts in the enantioselective α‐chlorination of cyclic β‐keto esters. Optimization of the catalyst structure and the reaction conditions has allowed the synthesis of optically active α‐chlorinated products with high enantioselectivities (up to 96% ee) using inexpensive commercially available N‐chlorosuccinimide (NCS) as the chlorine source under mild conditions.  相似文献   

16.
The highly enantioselective cascade reaction between N‐protected α‐cyanoglycine esters and α,β‐unsaturated aldehydes is disclosed. The reaction represents a one‐step entry to polysubstituted 5‐hydroxyproline derivatives having a quaternary α‐stereocenter generally in high yields with up to >95:5 dr and 99:1 er. It is also a direct catalytic two‐step entry to functionalized α‐quaternary proline derivatives.  相似文献   

17.
A new kind of bifunctional (thio)urea‐phosphine catalyst was synthesized and applied to the aza‐Morita–Baylis–Hillman reaction of N‐sulfonated imines with methyl vinyl ketone, phenyl vinyl ketone, ethyl vinyl ketone or acrolein. Moderate to excellent ee and yields of the products were obtained under mild reaction conditions.  相似文献   

18.
An efficient enantioselective aza‐Henry reaction of nitroalkanes to imines bearing a benzothiazole moiety catalyzed by a Cinchona‐based squaramide has been developed. In the reaction of imines, the corresponding products were obtained in good to excellent yields (up to 99%) with excellent enantioselectivities (up to >99% ee) for most of the aromatic substituted imines. The imines with electron‐withdrawing groups gave better yields than those bearing electron‐donating groups in the aza‐Henry reaction. Moreover, a one‐pot three‐component enantioselective aza‐Henry reaction using 2‐aminobenzothiazoles, aldehydes, and nitromethane was also developed. Moderate to good yields and high enantioselectivities were obtained in the one‐pot cases (up to 98% ee).  相似文献   

19.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

20.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号