首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
Four series of noble networks were synthesized with acrylic acid (AAc) copolymerized with varying amount of 2‐hydroxy propyl methacrylate or dodecyl methacrylate (AAc/HPMA or AAc/DMA; 5:1 to 5:5, w/w) in the presence of ethylene glycol dimethacrylate (EGDMA; 1, 5, 10, 15, and 20%, w/w) as a crosslinker and ammonium per sulfate (APS) as an initiator. Each of the networks was used to immobilize a purified lipase from Pseudomonas aeruginosa MTCC‐4713. The lipase was purified by successive salting out with (NH4)2SO4, dialysis, and DEAE anion exchange chromatography. Two of the matrices, E15a, i.e. [poly (AAc5co‐DMA1cl‐EGDMA15)] and I15c, i.e. [poly (AAc5co‐HPMA3cl‐EGDMA15)], that showed relatively higher binding efficiency for lipase were selected for further studies. I15c‐hydrogel retained 58.3% of its initial activity after 10th cycle of repetitive hydrolysis of p‐NPP, and I15c was thus catalytically more stable and efficient than the other matrix. The I15c‐hydrogel‐immobilized enzyme showed maximum activity at 65°C and pH 9.5. The hydrolytic activity of free and I15c‐hydrogel‐immobilized enzyme increased profoundly in the presence of 5 mM chloride salts of Hg2+, NH4+, Al3+, K+, and Fe3+. The immobilized lipase was preferentially active on medium chain length p‐nitrophenyl acyl ester (C:8, p‐nitrophenyl caprylate). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4636–4644, 2006  相似文献   

2.
A range of fatty acid esters is now being produced commercially with immobilized microbial lipases (glycerol ester hydrolases; EC) in nonaqueous solvents. In this study, a synthetic hydrogel was prepared by the copolymerization of methacrylic acid and dodecyl methacrylate in the presence of a crosslinker, N,N‐methylene bisacrylamide. A purified alkaline thermotolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a poly(methacrylic acid‐co‐dodecyl methacrylate‐clN,N‐methylene bisacrylamide) hydrogel by an adsorption method. The hydrogel showed a 95% binding efficiency for the lipase. The bound lipase was evaluated for its hydrolytic potential toward various p‐nitrophenyl acyl esters with various C chain lengths. The bound lipase showed optimal hydrolytic activity toward p‐nitrophenyl palmitate at a pH of 8.5 and a temperature of 55°C. The hydrolytic activity of the hydrogel‐bound lipase was enhanced by Hg2+, Fe3+, and NH ions at a concentration of 1 mM. The hydrogel‐bound lipase was used to synthesize geranyl acetate from geraniol and acetic acid in n‐heptane. The optimization of the reaction conditions, such as catalyst loading, effect of substrate concentration, solvent (n‐pentane, n‐hexane, n‐heptane, n‐octane, and n‐nonane), reaction time, temperature, molecular sieve (3 Å × 1.5 mm) and scale up (at 50‐mL level), was studied. The immobilized lipase (25 mg/mL) was used to perform an esterification in n‐alkane(s) that resulted in the synthesis of approximately 82.8 mM geranyl acetate at 55°C in n‐heptane under continuous shaking (160 rpm) after 15 h when geraniol and acetic acid were used in a ratio of 100 : 100 mM. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 40 mg/mL in reaction volume (2 mL) resulted in an increase in the conversion of reactants into geranyl acetate (90.0 mM). During the repetitive esterification under optimum conditions, the hydrogel‐bound lipase produced ester (37.0 mM) after the eighth cycle of reuse. When the reaction volume was scaled up to 50 mL, the ester synthesized was 58.7 mM under optimized conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Microbial lipases (E.C. 3.1.1.3) are preferred biocatalysts for the synthesis of esters in organic solvents. Various extracellular thermoalkaliphilic lipases have been reported from Pseudomonas sp. In the present study, a purified alkaline thermoalkalophilic extracellular lipase of Pseudomonas aeruginosa MTCC‐4713 was efficiently immobilized onto a synthetic poly(AAc‐co‐HPMA‐cl‐EGDMA) hydrogel by adsorption and the bound lipase was evaluated for its hydrolytic potential towards various p‐nitrophenyl acyl esters varying in their C‐chain lengths. The bound lipase showed optimal hydrolytic activity towards p‐nitrophenyl palmitate (p‐NPP) at pH 8.5 and temperature 45°C. The hydrolytic activity of the hydrogel‐bound lipase was markedly enhanced by the presence of Hg2+, Fe3+, and NH salt ions in that order. The hydrogel‐immobilized lipase (25 mg) was used to perform esterification in various n‐alkane(s) that resulted in ~ 84.9 mM of methyl acrylate at 45°C in n‐heptane under shaking (120 rpm) after 6 h, when methanol and acrylic acid were used in a ratio of 100 mM:100 mM, respectively. Addition of a molecular sieve (3Å × 1.5 mm) to the reaction system at a concentration of 100 mg/reaction vol (1 mL) resulted in a moderate enhancement in conversion of reactants into methyl acrylate (85.6 mM). During the repetitive esterification under optimum conditions, the hydrogel‐bound lipase produced 71.3 mM of ester after 10th cycle of reuse. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 183–191, 2007  相似文献   

4.
Selective enzymatic hydrolysis of salmon oil extracted without solvent from by‐products was carried out under mild conditions, using a stereospecific sn‐1, sn‐3 lipase Novozyme®. A modification of the lipid class composition was obtained by controlling the degree of hydrolysis (40%, 24 h). The mixture of acylglycerols and free fatty acids was submitted to a filtration step to retain in the retentate most of the saturated fatty acids, with melting peaks ranging from ‐31.9 °C to +14.7 °C obtained by differential scanning calorimetry. This step allowed a significant increase of polyunsaturated fatty acids (PUFA) from 39.2 mol‐% in the crude oil to 43.3% in the permeate. The remaining free fatty acids in the permeate (20.2 wt‐%) was re‐esterified with an immobilized 1, 3‐specific lipase IM60. Acylglycerols synthesis reached 90% in optimized conditions. After 48 h of reaction, the distribution of monoacylglycerols, diacylglycerols and triacylglycerols was 22.1, 28.7, 43.4 (w/w), respectively. The re‐esterification step did not modify the PUFA content obtained after membrane filtration.  相似文献   

5.
A novel separation process based on the hydrophobic adsorption at the n‐hexadecane–water interface was developed for the recovery of Acinetobacter radioresistens lipase from a pre‐treated fermentation broth. In a mixture containing water, lipase and n‐hexadecane, a water‐in‐oil emulsion was formed when the n‐hexadecane‐to‐water ratio (o/w ratio) was larger than 3, and a large amount of lipase was found to be adsorbed at the interface. Compared with the oil‐in‐water emulsion (occurring when o/w ratio < 3), the water‐in‐oil emulsion generated smaller droplets and larger interfacial area, and was more stable. The harvested emulsion phase could be centrifuged to give an aqueous, concentrated lipase solution. Adsorption of lipase at the interface could be described by the Langmuir isotherm. For lipase concentrations ranging from 8.4 to 87.2 U cm?3, a single‐stage adsorption resulted in a six‐ to four‐fold concentration and 16–45% activity recovery, where lipase concentration was the dominant factor. A method using data from a single‐stage adsorption to predict multiple‐stage operation was described, and the agreement between the experimental and the predicted results was good. To improve the enzyme recovery, a multiple‐run adsorption process was proposed. The use of salts enhanced the hydrophobic interaction between lipase and n‐hexadecane. Advantages of the proposed process include simple operation, low operational cost, environmentally friendly, no requirement for pre‐concentration of the enzyme solution, and negligible enzyme denaturation. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
Isolation of a novel microbial lipase (EC 3.1.1.3) having specific catalytic activity for the synthesis of optically pure 2‐O‐benzylglycerol‐1‐acetate, the building block for the preparation of many β‐blockers, phospholipase A2 inhibitors and other biologically active compounds was the aim of this investigation. A Pseudomonas (strain G6), recently isolated from soil, produced an extracellular lipase. SDS–PAGE analysis showed that the lipase protein was a hexamer. The molecular weight of the sub‐units of the lipase protein were 10, 19, 29, 30, 47 and 53. The catalytic activity of the lipase was exploited for the synthesis of 2‐O‐benzylglycerol‐1‐acetate from 2‐O‐benzylglycerol through transesterification using vinyl acetate as acylating agent. High selectivity of the lipase towards the monoacetate product was demonstrated. A 97% enantiomeric excess (ee) of S(+)‐2‐O‐benzylglycerol‐1‐acetate was obtained when the reaction was carried out at room temperature with shaking. The lipase was highly active in anhydrous organic microenvironments and in non‐polar organic solvents with log P values above 2.5. © 2002 Society of Chemical Industry  相似文献   

7.
Microbial lipases (E.C. 3.1.1.3) are the preferred biocatalysts for the synthesis of various fragrance compounds, such as linalool acetate, citronellal acetate, and geranyl acetate, in organic solvents over chemical synthesis. In this study, a purified alkaline extracellular lipase of Pseudomonas aeruginosa MTCC‐4713 was efficiently immobilized onto a synthetic poly(AAc‐co‐HPMA‐cl‐EGDMA) hydrogel by surface adsorption, and the bound lipase was evaluated for its hydrolytic potential toward various p‐nitrophenyl acyl esters, which differed in their C‐chain length. Among four series of hydrogels prepared by the variation of the concentrations of monomer and crosslinker, two hydrogels, namely, I5d and I20d, that exhibited relatively higher protein (lipase activity) bindings were selected to perform hydrolytic and synthetic (geranyl butyrate) reactions in aqueous and organic solvents. The hydrogel‐bound lipase was highly hydrolytic toward p‐nitrophenyl ester (C: 16; p‐nitrophenyl palmitate). The hydrogel‐immobilized lipase was quite stable and retained approximately 57.6% of its original hydrolytic activity after the fifth cycle of reuse under optimized conditions (pH 8.5, 65°C). The hydrogel‐immobilized lipase when used to perform the esterification of geraniol/butyric acid (400 : 100 mM) in n‐heptane resulted in 98.8 mM geranyl butyrate at 65°C under shaking (120 rpm) after 15 h of reaction time. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 100 mg per reaction volume (1 mL) resulted in the complete conversion of the reactants into geranyl butyrate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
A purified alkaline thermotolerant bacterial lipase of Bacillus coagulans MTCC‐6375 was efficiently immobilized onto poly(N‐AEAAm‐co‐AAc‐cl‐MBAm)‐hydrogel at pH 8.5 and at temperature 55°C in 16 h. The hydrogel‐bound matrix possessed 1.04 U/g (matrix) lipase activity with a specific activity of 1.8 U/mg of protein. The immobilized lipase resulted in formation of 52.5 mM of ethyl propionate (52% conversion) at 55°C in 9 h in n‐nonane. Ethanol and propionic acid when used in a ratio of 300 : 100 mM, respectively, in n‐nonane along with 10 mg of hydrogel‐bound lipase resulted in optimal synthesis of ethyl propionate (82.5 mM). Addition of molecular sieves (3 Å, 0.7 g/reaction volume) further enhanced the conversion rate to 82.4% resulting in 83.5 mM of ethyl propionate. Incubation temperature below or above 55°C had a marked effect on the synthesis of ethyl propionate. However, esterification performed in n‐heptane at 65°C resulted in 87.5 mM of ethyl propionate with a conversation rate of 89.3%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
A purified alkaline thermotolerant bacterial lipase from Bacillus coagulans BTS‐3 was immobilized on nylon‐6 matrix activated by glutaraldehyde. The matrix showed ~ 70% binding efficiency for lipase. The bound lipase was used to perform transesterification in n‐heptane. The reaction studied was conversion of vinyl acetate and butanol to butyl acetate and vinyl alcohol. Synthesis of butyl acetate was used as a parameter to study the transesterification reaction. The immobilized enzyme achieved ~ 75% conversion of vinyl acetate and butanol (100 mmol/L each) into butyl acetate in n‐heptane at 55°C in 12 h. When alkane of C‐chain lower or higher than n‐heptane was used as an organic solvent, the conversion of vinyl acetate and butanol to butyl acetate decreased. During the repetitive transesterification under optimal conditions, the nylon bound lipase produced 77.6 mmol/L of butyl acetate after third cycle of reuse. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Earlier findings on the nutritional benefits of diacylglycerols (DAGs) have attracted much attention on the synthesis of DAGs. In this study, we reported an improved method for the lipase‐catalyzed synthesis of 1,3‐diolein by the irreversible glycerolysis of vinyl oleate with glycerol. The effects of reaction system, lipase loading, molar ratio of vinyl oleate to glycerol, reaction temperature and time on 1,3‐diolein content in crude reaction mixture were investigated. When the reaction was conducted in a solvent‐free system at 30 °C for 8 h by reacting 2 mmol vinyl oleate with 1 mmol glycerol with 8 % (w/w, relative to total reactants) Lipozyme RM IM (Novozymes, Beijing, China) as catalyst, there were 90.5 ± 2.9 % (area/area) 1,3‐diolein and (3.3 ± 0.3) % 1,2‐diolein produced. After purification, 1,3‐diolein was obtained at 81.4 % yield with 98.2 % purity. The lipase‐catalyzed synthesis of 1,3‐diolein using vinyl oleate as acyl donor by glycerolysis was also conducted using a medium with 50 mmol of glycerol and 100 mmol vinyl oleate. Compared to enzymatic esterification in a solvent, enzymatic glycerolysis for the synthesis 1,3‐diolein is more effective due to the irreversible reaction, mild due to the low reaction temperature, and environmentally benign due to the use of solvent‐free reaction system.  相似文献   

11.
Optimization of lipase‐catalyzed esterification for the production of medium‐chain triacylglycerols (MCT) from palm kernel oil distillate and glycerol was carried out in order to determine the factors that have significant effects on the reaction system and MCT yield. Novozyme 435 from Candida antarctica lipase was found to have the highest activity at 52.87 ± 0.03 U/g. This lipase also produced the highest MCT yield, which is 56.67%. The effect of different variables on MCT synthesis was studied with a two‐level five‐factor fractional factorial design. The various variables include (1) reaction temperature, (2) enzyme load, (3) molecular sieves concentration, (4) reaction time and (5) molar substrate ratio. Reaction temperature, reaction time and molar substrate ratio strongly affect MCT synthesis (p <0.05). However, enzyme load and molecular sieve concentration did not have a significant (p >0.05) influence on MCT yield. Therefore, the significant variables such as reaction temperature, reaction time and molar substrate ratio were further optimized through central composite rotatable design (CCRD). Comparisons between predicted and experimental values from the CCRD optimization procedures revealed good correlation, implying that the quadric response model satisfactorily expressed the percentage yield of MCT in the lipase‐catalyzed esterification. The optimum MCT yield is 73.3% by using 2 wt‐% enzyme dosage, a molecular sieves concentration of 1 wt‐%, a reaction temperature of 90 °C, a reaction time of 10 h and a molar substrate ratio of 4 : 1 (medium‐chain fatty acid/glycerol). Experiments to confirm the predicted results using the optimal parameters were conducted and an MCT yield of 70.21 ± 0.18% (n = 3) was obtained.  相似文献   

12.
The hydrolysis of sunflower and soybean oil, catalyzed by two enzymes, non‐immobilized Candida rugosa and immobilized Candida antarctica lipase, was performed at atmospheric and high‐pressure. The results showed that at atmospheric pressure between 40 °C and 60 °C initial reaction rates were influenced by the temperature variation, as expected. Due to favorable physico‐chemical properties of dense gases as reaction media, hydrolysis of soybean oil was performed in non‐conventional solvents: in supercritical (SC) CO2 and near‐critical propane. In SC CO2 the activity of non‐immobilized Candida rugosa lipase decreased while the reaction rates of hydrolysis catalyzed by immobilized Candida antarctica lipase were 1.5‐fold higher than at atmospheric pressure. However, the reaction rates for the hydrolyses catalyzed by both lipases, were much higher in propane than at atmospheric pressure.  相似文献   

13.
BACKGROUND: Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Biocatalysis of soybean oils using soluble lipase offers an alternative approach to lipase‐catalyzed biodiesel production using immobilized enzyme or whole‐cell catalysis. The central composite design (CCD) of response surface methodology (RSM) was used here to evaluate the effects of enzyme concentration, temperature, molar ratio of methanol to oil and stirring rate on the yield of fatty methyl ester. RESULTS: Lipase NS81006 from a genetically modified Aspergillus oryzae was utilized as the catalyst for the transesterification of soybean oil for biodiesel production. The experimental data showed that enzyme concentration, molar ratio of methanol to oil and stirring rate had the most significant impact on the yield of fatty methyl ester; a quadratic polynomial equation was obtained for methyl ester yield by multiple regression analysis. The predicted biodiesel yield was 0.928 (w/w) under the optimal conditions and the subsequent verification experiments with biodiesel yield of 0.936 ± 0.014 (w/w) confirmed the validity of the predicted model. CONCLUSION: RSM and CCD were suitable techniques to optimize the transesterification of soybean oil for biodiesel production by soluble lipase NS81006. The related lipase NS81006 reuse stability, chemical or genetic modification, and transesterification mechanism should be taken into consideration. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
BACKGROUND: A systematic investigation of mutual interference between a hydrogenation catalyst, Pd/Al2O3, and an immobilized lipase in a one‐pot synthesis of R‐1‐phenyl ethyl acetate at 70 °C has been undertaken. This paper reports the kinetic modeling of lipase‐mediated chemo‐bio cascade synthesis of R‐1‐phenyl ethyl acetate starting from acetophenone. RESULTS: The kinetic results revealed that these catalysts were not acting independently but in concert. A mechanism which predicts the experimental observations for this reaction is proposed. CONCLUSION: The parameters of the kinetic model, which are in good agreement with the experimental data, were estimated through numerical data fitting. The reliability of the estimated parameters was analyzed using the Markov Chain Monte Carlo (MCMC) method. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Summary: Two different types of biodegradable polyester composites, PLLA fiber‐reinforced PCL and PCL/PLLA blend films were prepared at PCL/PLLA ratio of 88/12 (w/w), together with pure PCL and PLLA films. Their enzymatic degradation was investigated by the use of Rhizopus arrhizus lipase and proteinase K as degradation enzymes for PCL and PLLA chains, respectively. In the FRP film, the presence of PLLA fibers accelerated the lipase‐catalyzed enzymatic degradation of PCL matrix compared with that in the pure PCL film, whereas in the blend film, the presence of PLLA chains dissolved in the continuous PCL‐rich domain retarded the lipase‐catalyzed enzymatic degradation of PCL chains. In contrast, in the FRP film, the proteinase K‐catalyzed enzymatic degradation of PLLA fibers was disturbed compared with that of the pure PLLA film, whereas in the blend film, the proteinase K‐catalyzed enzymatic degradation rate of particulate PLLA‐rich domains was higher than that of pure PLLA film. The reasons for aforementioned enhanced and disturbed enzymatic degradation are discussed.

Normalized PCL weight loss of pure PCL, FRP, and blend films as a function of Rhizopus arrhizus lipase‐catalyzed enzymatic degradation time.  相似文献   


16.
A purified alkaline thermo‐tolerant lipase from Pseudomonas aeruginosa MTCC‐4713 was immobilized on a series of five noble weakly hydrophilic poly(AAc‐co‐HPMA‐cl MBAm) hydrogels. The hydrogel synthesized by copolymerizing acrylic acid and 2‐hydroxy propyl methacrylate in a ratio of 5 : 1 (HG5:1 matrix) showed maximum binding efficiency for lipase (95.3%, specific activity 1.96 IU mg?1 of protein). The HG5:1 immobilized lipase was evaluated for its hydrolytic potential towards p‐NPP by studying the effect of various physical parameters and salt‐ions. The immobilized lipase was highly stable and retained ~92% of its original hydrolytic activity after fifth cycle of reuse for hydrolysis of p‐nitrophenyl palmitate at pH 7.5 and temperature 55°C. However, when the effect of pH and temperature was studied on free and bound lipase, the HG5:1 immobilized lipase exhibited a shift in optima for pH and temperature from pH 7.5 and 55°C to 8.5 and 65°C in free and immobilized lipase, respectively. At 1 mM concentration, Fe3+, Hg2+, NH4+, and Al3+ ions promoted and Co2+ ions inhibited the hydrolytic activities of free as well as immobilized lipase. However, exposure of either free or immobilized lipase to any of these ions at 5 mM concentration strongly increased the hydrolysis of p‐NPP (by ~3–4 times) in comparison to the biocatalysts not exposed to any of the salt ions. The study concluded that HG5:1 matrix efficiently immobilized lipase of P. aeruginosa MTCC‐4713, improved the stability of the immobilized biocatalyst towards a higher pH and temperature than the free enzyme and interacted with Fe3+, Hg2+, NH4+, and Al3+ ions to promote rapid hydrolysis of the substrate (p‐NPP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4252–4259, 2006  相似文献   

17.
Lipase from Candida rugosa was immobilized by entrapment while polymerizing a poly(N‐vinyl‐2‐pyrrolidone‐co‐styrene) [poly(VP‐co‐ST)] hydrogel using ethylene dimethacrylate (EDMA) as the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases were also determined. The activities were relatively higher when the percent compositions of VP(%):ST(%) were 50:50 and 30:70. The lipase immobilized on VP(%):ST(%) 50:50 showed the highest thermal stability, while lipase immobilized on VP(%):ST(%) 30:70 exhibited the highest solvent stability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1404–1409, 2001  相似文献   

18.
BACKGROUND: Enzymatic esterification of phytosterols with fatty acids from butterfat in equimolecular conditions to produce phytosteryl esters was performed in solvent‐free medium. Commercial and immobilized Candida rugosa lipases were used as biocatalysts for the reaction. RESULTS: By this methodology, under simple and mild reaction conditions (without solvents, 50 °C and short reaction times), 94% and 99% (w/w) of phystosteroyl esters were obtained in 48 h and 9 h with the commercial and the immobilized lipase, respectively. The effects of temperature, fatty acid specificity, enzyme amount and residual activity of each lipase were also evaluated. CONCLUSIONS: The phytosteryl esters from butterfat produced in this study are expected to have lower melting point, improved oil and fat solubility and bioavailability compared to that of their corresponding free phytosterols. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Fatty acid alkyl esters were produced from various vegetable oils by transesterification with different alcohols using immobilized lipases. Using n‐hexane as organic solvent, all immobilized lipases tested were found to be active during methanolysis. Highest conversion (97%) was observed with Thermomyces lanuginosa lipase after 24 h. In contrast, this lipase was almost inactive in a solvent‐free reaction medium using methanol or 2‐propanol as alcohol substrates. This could be overcome by a three‐step addition of methanol, which works efficiently for a range of vegetable oils (e.g. cottonseed, peanut, sunflower, palm olein, coconut and palm kernel) using immobilized lipases from Pseudomonas fluorescens (AK lipase) and Rhizomucor miehei (RM lipase). Repeated batch reactions showed that Rhizomucor miehei lipase was very stable over 120 h. AK and RM lipases also showed acceptable conversion levels for cottonseed oil with ethanol, 1‐propanol, 1‐butanol and isobutanol (50‐65% conversion after 24 h) in solvent‐free conditions. Methyl and isopropyl fatty acid esters obtained by enzymatic alcoholysis of natural vegetable oils can find application in biodiesel fuels and cosmetics industry, respectively.  相似文献   

20.
BACKGROUND: The addition of co‐solvent is not limited to enhancing the catalytic rate, it could also assist in situ racemization in the dynamic kinetic resolution of racemic compounds by increasing the reactivity of the base catalyst employed. In the current work, reaction media with the presence of DMSO were investigated in Candida rugosa lipase (EC 3.1.1.3)‐catalyzed hydrolysis of ibuprofen ester that focuses on the thermodynamic effect, reaction stability and implication for the kinetic parameters. RESULTS: The introduction of 2% DMSO increased the reaction rate, conversion, and enantioselectivity of the Candida rugosa lipase‐mediated resolution. However, the performance of the particular enzymatic reaction was reduced when a higher DMSO concentration was added. At lower reaction temperatures, the medium with 2% DMSO exhibited an increase in enantioselectivity, which was attributed to a higher activation energy difference between the fast‐ and slow‐reacting enantiomers compared with the water‐isooctane medium. Additionally, the presence of DMSO had a significant effect on the kinetic parameters, shown by a lower value of Michaelis constant compared with that of a normal reaction without DMSO, which resulted in a fast reaction rate. Finally, inhibition due to the uncompetitive substrate inhibitor was reduced, while the non‐competitive product inhibitor consequently increased. CONCLUSION: This work has demonstrated that only 2% of DMSO can be tolerated by the free Candida rugosa lipase in the resolution of ibuprofen ester. However, it is still able to give significant positive effects on the hydrolysis rate, kinetic parameters and enantioselectivity as well as reaction stability. © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号