首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Adsorption of puerarin on native resin polystyrene (PS) and oligo‐β‐cyclodextrin‐coupled matrix (PS‐CDP) was studied for interactions between the adsorbents and the adsorbates. The sorption mechanism on PS‐CDP was investigated using the isosteric heat approach and nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The equilibrium adsorption data of puerarin on the two matrices PS and PS‐CDP (polystyrene‐based matrix before and after coupling by oligo‐β‐cyclodextrin) in the temperature range 288–318 K were well fitted to the Freundlich adsorption isotherm model. The energetic heterogeneity of the media was observed based on the result that the values of isosteric enthalpy were quantitatively correlated with the fractional loading of puerarin adsorption. The more heterogeneous surface of PS‐CDP compared with PS was attributed to the complexation between puerarin and β‐cyclodextrin (β‐CD). NMR studies validated the formation of an inclusion complex puerarin/β‐CD. CONCLUSION: Thermodynamic and NMR studies confirmed that multi‐interaction cooperatively governed the isolation of puerarin from aqueous solution on PS‐CDP matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
In this study, inclusion complexes (ICs) between host hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) and guest poly(vinyl alcohol) (PVA) were prepared through polymer processing with water as plasticizer and solvent. The structure of PVA/HP‐β‐CD ICs was confirmed by FTIR, 1H‐NMR and 2D‐NOESY NMR. The yields of PVA/HP‐β‐CD ICs were 62.5%, 51.4%, and 46.8% in twin‐screw, rotor and single‐screw processing, respectively. The crystallinity, thermal properties and mechanical properties of the PVA/HP‐β‐CD ICs were characterized by X‐ray diffraction, differential scanning calorimetry, thermal gravimetric analysis and tensile tests, respectively. The results indicated that HP‐β‐CD could establish strong interfacial interaction with PVA through hydrogen bonding and form ICs with PVA. As a result, crystallinity and melting temperature decomposition temperature of PVA were decreased. Compared with pure PVA, PVA/HP‐β‐CD ICs exhibited remarkable improvement in thermal stability. Moreover, the tensile strength, elongation at break and torque of ICs with different content of HP‐β‐CD were discussed. POLYM. ENG. SCI., 55:1988–1993, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

4.
The behavior of heptakis(2,3‐di‐O‐methyl‐6‐O‐sulfopropyl)‐β‐cyclodextrin as inverse phase transfer catalyst in biphasic Tsuji–Trost and hydroformylation reactions has been investigated. In terms of activity, this methylated sulfopropyl ether β‐cyclodextrin is much more efficient than the randomly methylated β‐cyclodextrin, which was the most active cyclodextrin known to date. From a selectivity point of view, the intrinsic properties of the catalytic system are fully preserved in the presence of this cyclodextrin as the chemo‐ or regioselectivity was found to be identical to that observed without a mass transfer promoter in the hydroformylation reaction. The efficiency of this cyclodextrin was attributed to its high surface activity and to the absence of interactions with the catalytically active species and the water‐soluble phosphane used to dissolve the organometallic catalyst in the aqueous phase.  相似文献   

5.
Three environment friendly β‐cyclodextrin polymer electrorheological (ER) particles (NS‐β‐CDP, WSS‐β‐CDP, and CLS‐β‐CDP) were synthesized by copolymerization through a mixture of β‐cyclodextrin (β‐CD) and epichlorohydrin in the absence of starch or in the presence of water‐soluble and water‐insoluble starch, respectively. The electrorheological properties of suspensions in silicone oil were then investigated under direct current (dc) electric fields. It was found that the yield stress of the typical WSS‐β‐CDP ER fluid was 6.2 kPa in 4 kV/mm, which is 35% higher than that of NS‐β‐CDP and similar to that of CLS‐β‐CDP. In the meantime, it can display a high ER performance even over a range of 65–95°C. The structures of these polymers were characterized by FT‐IR and Raman spectrometry, respectively. The results demonstrated that all of these polymers keep the original structural character of β‐CD and the copolymerizations between starch and β‐CD indeed occur. Furthermore, it was found that there was some relationship between the characteristic strength of polymers and their dielectric properties. Hence, the improvement of copolymer dielectric properties resulted in the enhancement of ER effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1681–1686, 2004  相似文献   

6.
BACKGROUND: Because of its high demand for use in pharmaceutical products, cosmetics, soil remediation technologies, etc., randomly methylated β‐cyclodextrin (RM‐β‐CD) is one of the most important cyclodextrin (CD) derivatives. The aim of this present work is to use a green and commercially available approach to obtain RM‐β‐CD. Compared with other methylated CDs, RM‐β‐CD with an asymmetric molecular structure has higher water solubility. When the degree of substitution (DS) is about 1.8, the solubility tends to increase with increasing temperature and is suitable for pharmaceutical applications. RESULTS: RM‐β‐CD was synthesized using a green approach with ideal DS equal to 1.79. The one step process of β‐cyclodextrin methylation by CH3Cl instead of (CH3)2SO4 at mild temperature (80 °C) and pressure (1.60 MPa) with a good yield (78%), is convenient and environmentally friendly. The mixture of RM‐β‐CD obtained contained five compounds with various DS, from which the main compound with a DS equal to 1.8 was separated by column chromatography. The compounds were carefully characterized by infra‐red, NMR and mass spectrometry. CONCLUSIONS: The one‐step process to RM‐β‐CDs with CH3Cl is more economical, more efficient and less noxious than the usual method using (CH3)2SO4. Moreover, this approach avoids some poisonous residual materials and meets the demand for protecting the environment. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
Eucalyptol (Euc) is a natural monoterpene with insecticide effects. Being highly volatile and sensitive to ambient conditions, its encapsulation would enlarge its application. Euc‐loaded conventional liposomes (CL), cyclodextrin/drug inclusion complex, and drug‐in‐cyclodextrin‐in‐liposomes (DCL) are prepared to protect Euc from degradation, reduce its evaporation, and provide its controlled release. The liposomal suspension is freeze‐dried using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as cryoprotectant. The liposomes are characterized before and after freeze‐drying. The effect of Euc on the fluidity of liposomal membrane is also examined. A release study of Euc from delivery systems, in powder and reconstituted forms, is performed by multiple head extraction at 60 °C after 6 months of storage at 4 °C. CL and DCL suspensions are homogeneous, show nanometric vesicles size, spherical shape, and negative surface charge before and after freeze‐drying. Moreover, HP‐β‐CD does not affect the fluidity of liposomes. CL formulations present a weak encapsulation for Euc. The loading capacity of eucalyptol in DCL is 38 times higher than that in CL formulation. In addition, freeze‐dried DCL and HP‐β‐CD/Euc inclusion complex show a higher retention of eucalyptol than CL delivery system. Both carrier systems HP‐β‐CD/Euc and Euc‐loaded DCL decrease Euc evaporation and improve its retention. Practical Applications: Eucalyptol is a natural insecticide. It is highly volatile and poorly soluble in water. To enlarge its application, its encapsulation in three delivery systems (conventional liposomes, cyclodextrin/drug inclusion complex, combined system composed of cyclodextrin inclusion complex and liposome) is studied. In this paper it is proved that cyclodextrin/eucalyptol inclusion complex and eucalyptol‐in‐cyclodextrin‐in‐liposome are effective delivery systems for encalyptol encapsulation, retention, and release.  相似文献   

8.
Because of low aqueous solubility and slow dissolution rate, cantharidin has a low oral bioavailability. Our research aims to prepare the inclusion complex of cantharidin and β‐cyclodextrin (β‐CD) and accomplish characterization, in vitro and in vivo evaluation. CA‐β‐CD inclusion complex was prepared by saturated solution method. The CA was demonstrated by HPLC in vitro experiment and by GC‐MS in vivo experiment. CA‐β‐CD inclusion complex was characterized by differential scanning calorimetry (DSC), X‐ray diffractometry (XRD), and nuclear magnetic resonance (NMR). Through complexation with β‐CD, the solubility of CA in neutral aqueous solution was improved significantly. CA‐β‐CD inclusion complex also shows a significantly improved dissolution rate in comparison with free CA. Comparison of the pharmacokinetics between CA‐β‐CD inclusion complex and free CA was performed in rats. The in vivo results show that CA‐β‐CD inclusion complex has earlier tmax, higher Cmax, and higher bioavailability than free CA after oral dosing. By comparing the AUC0–t of CA and CA‐β‐CD inclusion complex, the relative bioavailability of CA‐β‐CD inclusion complex to free CA was 506.3%, which highlighted the evidence of significantly improved bioavailability of formulation of CA with β‐CD. Thus, this β‐CD‐based drug delivery system should be an effective oral dosage form to improve oral bioavailability of CA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
The effect of methylated cyclodextrins on the RhH(CO)(TPPTS)3 complex in hydroformylation conditions [50 atm of CO/H2 (1/1) and 80 °C] has been investigated by high‐pressure 31P{1H} NMR spectroscopy. In the presence of methylated β‐cyclodextrin, the equilibria between the rhodium species lie in favor of phosphine low‐coordinated rhodium species. The formation of a stable inclusion complex between this cyclodextrin and the trisulfonated triphenylphosphine ligand (TPPTS) was found to be the key to understanding the displacement of the equilibria. Indeed, the methylated α‐cyclodextrin which does not interact with the TPPTS and the methylated γ‐cyclodextrin which can weakly bind to the TPPTS have no and a very low effect on the equilibria, respectively. These results explain for the first time why a decrease in the normal to branched aldehydes ratio is always observed when cyclodextrins are used as mass‐transfer agents in aqueous biphasic hydroformylation processes.  相似文献   

10.
A water‐soluble supramolecular‐structured photoinitiator (SSPI) was synthesized by supramolecular self‐assembling between methylated β‐cyclodextrin (MβCD) and hydrophobic 2,2‐dimethoxy‐2‐phenylacetophenone (DMPA). The structure of SSPI was characterized by X‐ray diffraction, FTIR, 1H NMR, UV–vis, and fluorescence spectra. The results indicated that MβCD and DMPA had formed 1 : 1 inclusion complex in methanol solution. The binding constant (K) for the complex was 7.51 × 102M?1. SSPI could be dissolved in water easily and its water‐solubility was 15.3 g/100 mL. SSPI was the more efficient photoinitiator than DMPA for the photopolymerization of acrylamide (AM) in homogeneous aqueous system. The conversion for photopolymerization of trimethylolpropane triacrylate system initiated by SSPI was similar to that initiated by DMPA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The potentialities of sulfobutyl ether‐β‐CDs derivatives as supramolecular carrier in a biphasic Tsuji–Trost reaction catalyzed by a water‐soluble palladium complex of trisulfonated triphenylphosphine have been investigated. The efficiency of these cyclodextrins (CDs) strongly depends on the average molar substitution degree of cyclodextrin and the highest rate enhancements were obtained with cyclodextrins containing about 7 sulfobutyl ether groups. This result was attributed to the absence of a strong interaction between this cyclodextrin and the trisulfonated triphenylphosphine used to dissolve the catalyst in the aqueous phase and to the presence of an extended hydrophobic cavity allowing a better molecular recognition between the substrate and the cyclodextrin. This constitutes the first example of a non‐interacting β‐cyclodextrin/phosphine couple with high catalytic activities.  相似文献   

12.
The influence of molecularly imprinted polymer‐methacrylic acid functionalized β‐cyclodextrin (MIP(MAA‐β‐CD)) morphology on the adsorption behavior studies towards benzylparaben (BzP) was explored. The effects of time, concentration, and temperature towards BzP uptake were extensively evaluated. The adsorption performance of MIP(MAA‐β‐CD) was compared with that on the molecularly imprinted polymer‐methacrylic acid (MIP(MAA)) synthesized without β‐CD. The MIP(MAA‐β‐CD) was synthesized to obtain a spherical and spongy‐porous texture with a broad pore size distribution. The MIP(MAA‐β‐CD) showed fast kinetic and the intra‐particle diffusion model demonstrated a three step (surface and pore) adsorption process. The Koble‐Corrigan isotherm was the most suitable model for data fitting, which indicated that MIP(MAA‐β‐CD) had homogeneous and heterogeneous surfaces. This finding clearly demonstrated that the large uptake and strong affinity of MIP(MAA‐β‐CD) did not only probably result from the monomer‐template interactions, but also due to the morphological MIP(MAA‐β‐CD) structure. In contrary to MIP(MAA‐β‐CD), MIP(MAA) synthesized with uniform morphology and narrow pore size distribution had lower adsorption capacities and its kinetic data fitted the pseudo‐second order diffusion model, indicating a two‐step (surface only) adsorption process. The MIP(MAA) adsorption process followed the Langmuir isotherm model referred to solely homogeneous uptake. The calculated thermodynamic parameters showed that the BzP uptake was exothermic, spontaneous, and physisorption process onto MIPs, which supported the results of kinetics and isotherm adsorption data. This study clearly revealed that the presence of β‐CD improved the morphology of synthesized MIP, and automatically enhanced the adsorption behavior of MIP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42720.  相似文献   

13.
Attachment of β‐cyclodextrin (β‐CD) molecules on cotton textile provides hosting cavities that can include a large variety of guest molecules for specific functionality. Five different new and existing techniques were evaluated for connecting β‐CD and its derivatives to cotton surface. A comparison has been made in terms of maximum attachment of β‐CD on cotton surface. Novel chemical based crosslinking with homo‐bi‐functional reactive dye (C.I. reactive black 5) and grafting with reactive monochlorotriazinyl‐β‐cyclodextrin show maximum attachment to cotton surface. Innovative, enzymatic coupling of especially synthesized 6‐monodeoxy‐6‐mono(N‐tyrosinyl)‐β‐cyclodextrin was performed on cotton textile surface. Enzymatic coupling was also carried out in a homogeneous system and attachment confirmed by UV–vis spectroscopy. This tyrosinase mediated coupling is low temperature and very specific technique. A phenolphthalein based analytical method was partially modified to reliably measure the amount of attached β‐CD on cotton surface. Atomic force microscopy and scanning electron microscopy techniques were used for surface characterization of the treated and untreated cotton surfaces. Alteration in surface topography has been observed for β‐CD treated samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
This work was committed to the polymerization of hydrophobic ketoethyl methacrylate monomer in aqueous medium in the presence of cyclodextrin, instead of polymerizing the monomer in toxic and volatile organic solvents. For this purpose, a new ketoethyl methacrylate monomer, p‐methylphenacylmethacrylate (MPMA), was synthesized from the reaction of p‐methylphenacylbromide with sodium methacrylate in the presence of triethylbenzylammonium chloride. The monomer was identified with FTIR, 1H and 13C‐NMR spectroscopies. Hydroxypropyl‐β‐cyclodextrin (HPCD) was used to form a water‐soluble host/guest inclusion complex (MPMA/HPCD) with the hydrophobic monomer. The complex was identified with FTIR and NMR techniques and polymerized in aqueous medium using potassium persulfate as initiator. During polymerization the resulting hydrophobic methacrylate polymer precipitated out with a majority of HPCD left in solution and a minority of HPCD bonded on the resulting polymer. The thus‐prepared polymer exhibited little difference from the counterparts obtained in organic solvent in number average molecular weight (Mn), polydispersity (Mw/Mn) and yield. The investigation provides a novel strategy for preparing hydrophobic ketoethyl methacrylate polymer in aqueous medium by using a monomer/HPCD inclusion complex. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A β‐cyclodextrin derivative grafted chitosan (CDD‐C) was synthesized with chitosan and carboxymethyl‐β‐cyclodextrin (β‐CD). Its structure was characterized by elemental, infrared spectra, and X‐ray diffraction analyses. The degree of substitution by the carboxymethyl‐β‐CD moiety achieved 0.27 with the addition of DMF to the reaction solution. The results are in agreement with the expectations. The static adsorption properties for guanosine, cytidine, and uridine were studied. Experimental results demonstrated that CDD‐C had higher adsorption capability for guanosine than cytidine and uridine, and the adsorption capacity for guanosine was 74.20 mg/g. The adsorption capacity was greatly influenced by pH, time, and temperature. The introduction of chitosan enhanced the adsorption ability and adsorption selectivity of β‐CD for guanosine. This novel derivative of chitosan is expected to have wide applications in separation, concentration, and analysis of guanosine, cytidine, and uridine in biological sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3050–3055, 2007  相似文献   

16.
Photoresponsive polymer with azobenzene pendant group (PDMAA‐co‐PAPA) was synthesized by radical polymerization of N,N‐dimethylacrylamide (DMAA) and N‐4‐phenylazophenyl acrylamide (PAPA), and the characterization of the inclusion complexes of the PDMAA‐co‐PAPA with α‐cyclodextrin (α‐CD) were performed by FTIR, GPC, 1H NMR, 2D NOESY, and UV–vis spectroscopy. It was found that the solubility of PDMAA‐co‐PAPA and α‐CD inclusion complexes in aqueous solution showed tunable property, which could be triggered by alternating UV–vis light irradiation at a certain temperature due to the effect of molecular recognition of α‐CD with azobenzene moiety in the polymer. After UV irradiation, the lower critical solution temperature (LCST) of the polymer aqueous solution increased slightly without α‐CD while the LCST decreased sharply at presence of α‐CD. Furthermore, UV spectroscopy showed that the photoisomerization of the polymer solution went on rapidly and reversibly, and 2D NOESY data suggested that the inclusion complexation of α‐CD with trans azobenzene moiety and the decomplexation with cis azobenzene resulted in reversible solubility behavior when objected to UV and Vis light irradiation alternately. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
A temperature‐sensitive hydrogel with the capability of inclusion complex formation with guest molecules was successfully grafted onto the surface of nonwoven polypropylene (nonwoven PP). This was carried out by the use of N‐isopropylacrylamide monomer and a modified cyclodextrin (acrylamidomethyl‐β‐cyclodextrin (β‐CD‐NMA)). Fourier‐transform infra red (FT‐IR) and elemental analyses confirmed the presence of poly(N‐isopropylacrylamide) (PNIPAAm) and β‐CD‐NMA components on the surface of the textile. Equilibrium swelling ratio measurements showed that the grafted hydrogel maintained its temperature‐sensitive property compared to a nongrafted hydrogel. The effect of β‐CD‐NMA and crosslink agent concentrations on the grafting yield was studied. The β‐CD‐NMA content into the PNIPPAM‐ β‐CD‐NMA grafted nonwoven PP (PNIPAAm‐β‐CD‐NMA‐PP) was estimated by FT‐IR through a new procedure. The estimated amounts of β‐CD‐NMA in PNIPAAm‐β‐CD‐NMA‐PP were determined to be 0.9, 1.9 mg g?1 for 0.019M and 0.049M concentrations of β‐CD‐NMA in monomer solution, respectively. The PNIPAAm‐β‐CD‐NMA‐PP showed a remarkable increase in absorbance affinity of 8‐anilino‐1‐naphthalenesulfonic acid ammonium salt at 20°C from 0.93 to 3.33 µmol g?1 compared to PNIPAAm‐PP. Furthermore, the results showed a temperature‐sensitive loading affinity for PNIPAAm‐β‐CD‐NMA‐PP in absorbance of guest molecules due to the presence of β‐CD‐NMA. The use of hydrophobic guest molecules such as fragrance oils and antibiotics in modified fabrics can provide new applications in textile and pharmaceutical industry. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40497.  相似文献   

18.
A novel pH‐responsive, chemically crosslinked hydrogelator (cl‐β‐CD/pVP) has been fabricated using β‐cyclodextrin (β‐CD) and N‐vinyl pyrollidone (N‐VP) in presence of diurethane dimethacrylate (DUDMA) crosslinker/azobisisobutyronitrile initiator through free radical polymerization. Various grades of cl‐β‐CD/pVP have been synthesized and the best grade has been considered with higher crosslinking density, higher gel strength, and lower % swelling ratio. The hydrogelator has been characterized by FTIR, 1H and 13C NMR spectroscopy, TGA, and FESEM analyses. The hydrogelator demonstrates pH‐responsive behavior, which has been confirmed by swelling behavior and gel characteristics at various pH (at 37 °C). Using hen egg lysozyme, degradation experiment has been performed, which confirms the biodegradable nature of the hydrogel. The in vitro cytotoxicity study and live–dead assay suggest that the hydrogelator is cytocompatible toward MG‐63 cells. Finally, the hydrogelator shows excellent efficacy as an antibiotic (amoxicillin) carrier. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45939.  相似文献   

19.
A novel linear water‐soluble β‐cyclodextrin polymer has been prepared by grafting β‐cyclodextrin on poly[(methyl vinyl ether)‐alt‐(maleic anhydride)]. First, lithium hydride was used to obtain the mono‐alkoxide β‐CD. Grafting of β‐CD derivatives to the polymer backbone was then carried out by an esterification method. Using this method, polymers containing various amounts of β‐CD were synthesized. The resulting grafted polymers were characterized by two complementary methods, 1H NMR and IR spectroscopy. The first was used to calculate the degree of substitution for the low amounts of β‐CD. The second method was very useful to evaluate the degree of substitution and the molar ratio of CD especially for high amounts of grafting. Our results indicate good agreement between both methods for intermediate rates. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Novel acrylic monomers (β‐CD‐A and β‐CD‐6‐EA) containing β‐cyclodextrin (β‐CD) with different extent of substitution were prepared by using dicyclohexylcarbodiimide (DCC) as a condensation agent at room temperature. Two kinds of functional hydrogels were also synthesized by copolymerization of β‐CD‐A and β‐CD‐6‐EA with acrylic acid (AAc) using a redox initiator system in aqueous solution. The nuclear magnetic resonance (1H NMR), infrared spectroscopy (IR), thermogravimetric analysis (TGA) were employed to character the molecular structures of β‐CD modified monomers and their copolymers. The swelling experiments indicate that the hydrogels with different equilibrium swelling ratio (ESR) possess obvious pH‐sensitivity and distinct dynamic swelling behavior. Using an anti‐cancer drug, chlorambucil (CHL), able to form complexes with β‐CD in water, as a model compound, the controlled drug release behaviors of these hydrogels were investigated. The release behavior of CHL from two kinds of hydrogels synthesized reveals that the release rate of CHL can be effectively controlled by pH values, cross‐linking density, and β‐CD content. In addition, it is found that the β‐CD with the proper frame and concentration can increase release efficiency of CHL from the hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号