首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解决磷石膏抹灰砂浆耐水性差的问题,促进磷石膏抹灰砂浆在建筑行业的应用,采用预处理的改性磷石膏,研究了水胶比和减水剂掺量对改性磷石基抹灰砂浆物理性能、力学性能和耐水性能的影响,并通过在体系中引入有机硅防水剂来进一步改善磷石膏抹灰砂浆耐水性能。研究结果表明:减水剂掺量和水胶比是影响磷石膏抹灰砂浆性能的主要因素,低水胶比和低减水剂掺量有利于其力学性能和耐水性能的提升,且减水剂掺量不宜高于0.9%;有机硅防水剂虽然能有效改善磷石膏抹灰砂浆耐水性能,但会对其强度造成不利影响,实际应用时其掺量不宜高于0.6%;水化产物中的凝胶和钙矾石可以填充二水硫酸钙晶体间空隙,有利于试件密实度、强度和软化系数的提高,且有机硅防水剂会在水化产物表面和间隙中形成防水膜,可以进一步改善试件耐水性能。  相似文献   

2.
探究了膨胀蛭石不同掺量及不同粒径对石膏基复合材料性能的影响,进一步分析了相关影响机理。结果表明,粒径 3~4 mm,掺量15%的膨胀蛭石对空白组石膏的流动度、表观密度、力学强度及导热系数影响最显著。膨胀蛭石掺量15%,粒径3~4 mm 的石膏试块,表观密度、绝干抗压强度、绝干抗折强度、导热系数分别下降到1 238 kg/m~3、3.16 MPa、1.56 MPa、0.19 W/(m·K),相较于空白组分别下降了19.3%、74.8%、67.2%、73.7%,在隔热保温材料方面具有良好的性能。  相似文献   

3.
以大掺量磷石膏制得高强墙体砖,磷石膏掺量达到65%,砖的抗压强度达到30MPa以上,且具有优异的耐水性和抗冻性。研究了半水石膏、粉煤灰、钢渣掺量对制品各性能的影响。结果表明,钢渣改善制品性能较为理想;当以同等质量的钢渣或粉煤灰取代5%的河砂,会造成制品的耐水性和抗冻性下降。探究了该砖的强度形成机理,并对其经济效益和社会效益予以分析。  相似文献   

4.
以脱硫石膏、膨胀珍珠岩为主要原材料制备膨胀珍珠岩/脱硫石膏复合材料,利用单因素实验法研究了材料制备方式、试件振捣次数、膨胀珍珠岩掺量等对其性能的影响,并确定出较优制备方式。结果表明,采用脱硫石膏与柠檬酸先混合搅拌均匀,再加入膨胀珍珠岩搅拌,最后加入水搅拌,直接成型,当膨胀珍珠岩的掺量为2.0%时,制备的复合材料绝干抗折强度、绝干抗压强度、饱水抗折强度和饱水抗压强度分别为3.83 MPa、8.92 MPa、1.66 MPa和4.26 MPa,干表观密度为1.166 g/cm3,满足规范使用要求。   相似文献   

5.
为获得轻质且强度高的新型脱硫石膏砌块材料,以脱硫石膏为原料,通过添加膨胀珍珠岩、玻璃纤维和防水剂制备新型脱硫石膏砌块,研究新型石膏砌块表观密度、断裂荷载、抗压强度、软化系数、吸水率等变化情况。结果表明,当膨胀珍珠岩掺量为1.25%、玻璃纤维饱和掺量为1.4%、防水剂掺量为2%时,石膏砌块的表观密度及力学性能最优,此条件下制备砌块砖的表观密度为959kg/m~3,断裂荷载为2.72kN,抗压强度为10.7MPa。  相似文献   

6.
研究主要掺和料矿粉及水泥单掺和复掺对磷石膏复合胶凝材料力学性能及耐水性能的影响,并通过扫描电镜(SEM)、压汞法(MIP)探究影响机理。结果表明,水泥掺量为0~20%、矿粉掺量为0~40%时,水泥和矿粉的单掺对磷石膏抗压强度有负面影响,但可有效提升软化系数。水泥及矿粉复掺时,可显著提高磷石膏软化系数,使软化系数达到0.65以上;当水泥掺量为5.58%,矿粉掺量为20.00%时,磷石膏复合胶凝材料抗压强度达到最大值16.50 MPa;水胶比由0.6降低至0.3,可制备抗压强度为32.50 MPa,软化系数为0.87的高强耐水磷石膏复合胶凝材料。由SEM结果可知,水泥及矿粉的水化产物包覆在石膏晶体表面,可显著提升其耐水性;由MIP结果可知,矿粉与水泥复掺可增加小孔(3~50 nm)比例及孔弯曲度,大幅降低平均孔径,改善孔径分布,增加基体致密度,进而提升抗压强度。  相似文献   

7.
通过在脱硫石膏中掺入膨胀聚苯乙烯(EPS)颗粒与玄武岩纤维,研究具有轻质与增韧性的脱硫石膏复合材料。结果表明,脱硫石膏中EPS颗粒的最佳掺量为0.9%;当玄武岩纤维掺量为1.6%时,EPS颗粒/脱硫石膏材料在干燥状态下的抗压与抗折强度分别为6.50 MPa和3.98MPa,与未掺纤维相比,强度分别提升35.98%和67.93%。在此条件下获得的EPS颗粒/脱硫石膏试块吸水率为25.81%,表观密度为0.834 g/cm~3,EPS颗粒/脱硫石膏复合材料性能较优。  相似文献   

8.
外加剂改善石膏耐水性能试验研究   总被引:1,自引:0,他引:1  
石膏作为一种气硬性胶凝材料具有耐水性差的重大缺陷,限制了它的应用领域。掺入一种外加剂提高石膏材料的耐水性能,并探讨其对石膏表观密度、强度、吸水率、软化系数的影响。结果表明:当外加剂掺量为30%时,石膏干燥状态下7 d抗压强度和抗折强度分别为27.07 MPa和1.98 MPa,吸水率降低了16.12%,抗压、抗折软化系数分别提高73%和300%。  相似文献   

9.
以微晶纤维素为改性材料,探究微晶纤维素在不同掺量下对磷建筑石膏力学性能及耐水性能影响,并对其水化产物及微观形貌进行分析.结果表明,微晶纤维素掺量为0.09%时,磷建筑石膏基复合材料的绝干抗折强度、绝干抗压强度、软化系数最优,分别为4.75 MPa、17.65 MPa、0.61,较空白组分别增加36.5%、31.2%、2...  相似文献   

10.
为获得轻质且强度高的新型脱硫石膏砌块材料,以脱硫石膏为原料通过添加膨胀珍珠岩、玻璃纤维和防水剂来研究新型石膏砌块表观密度、断裂荷载、抗压强度、软化系数、吸水率等变化情况。研究结果表明,当膨胀珍珠岩掺量为1.25%、玻璃纤维的饱和掺量为1.4%、防水剂的掺量为2%时石膏的表观密度及力学性能最优,在此条件下制备砌块砖表观密度为959kg/m3,断裂荷载为2720N,抗压强度为10.7MPa。  相似文献   

11.
以工业副产脱硫建筑石膏为主要原料,有机硅防水剂为添加剂,采用化学发泡和掺入EPS颗粒两种不同的工艺制备轻质石膏制品,研究了其对干密度和吸水率的影响。结果表明,随水膏比及发泡剂用量的增加,发泡石膏制品干密度降低,吸水率升高,最佳水膏比为0.55,发泡剂掺量在16%;加入适量甲基硅酸钠不但可改善发泡石膏制品的耐水性,还可催化发泡剂降低石膏制品干密度,改善石膏制品孔结构,其最佳掺量在4%;聚苯乙烯(EPS)颗粒的适量掺入能有效降低石膏制品干密度和吸水率。EPS颗粒掺量为3.5%时,石膏制品干密度比未掺EPS颗粒降低65%,比化学发泡法制得的石膏降低32%。EPS颗粒掺量为2.5%时,其吸水率仅达到4.3%,比化学发泡法制得的石膏降低85%。  相似文献   

12.
以未经处理的原状磷石膏为主要原料制备磷石膏基胶凝材料,通过微观分析及测试其力学性能,考察石灰掺量,水泥、粉煤灰比例及养护制度对磷石膏基胶凝材料力学性能的影响。结果表明:(1)该体系最优配比为磷石膏60%,水泥与粉煤灰比例为1∶4,生石灰4%,水料比0.25,减水剂0.2%;(2)该胶凝体系中磷石膏掺量超过60%后,抗压、抗折强度急剧下降;(3)蒸养制度对磷石膏基胶凝材料性能影响较大,在75℃下蒸汽养护10 h,基体强度增长较快且耐水性较高,28 d抗压强度为30.1 MPa,吸水率为8.5%,软化系数达到0.82。  相似文献   

13.
研究了粉煤灰、矿粉和石膏3种掺合料取代水泥用量对干粉砂浆性能的影响.结果表明,粉煤灰、矿粉和石膏复合掺加取代水泥,可使砂浆中矿粉的活性得到较好激发;增稠保湿剂(RX1与HPMC按9∶1质量比复配)掺量0.6%时,砂浆的稠度和保水性较好;当矿粉掺量为30%、粉煤灰、石膏掺量均为10%时,加入增稠保湿剂,砂浆强度等级能够满足M10要求.  相似文献   

14.
水泥掺量对脱硫石膏基自流平材料的影响   总被引:1,自引:0,他引:1  
主要研究了水泥掺量对石膏基自流平材料力学性能、工作性能、尺寸变化率、微观结构和孔结构的影响.结果表明:在石膏基自流平材料中掺入一定量的水泥,可以优化其孔结构,提高密实度,随着水泥掺量的增加,孔径逐渐细化;当水泥添加量为8%时,自流平材料的工作性能与力学性能达到最优.随着水泥掺量的增加,材料表现出收缩的趋势.  相似文献   

15.
以改善石膏耐水性为目的,采用复合硅酸盐水泥作为无机改性剂,研究复合硅酸盐水泥及其掺量对石膏表观密度、强度、吸水率、软化系数的影响。结果表明,适量复合硅酸盐水泥的掺入可以改善石膏的强度、软化系数及吸水率;水泥的最佳掺量应为20%,此时石膏干抗压强度、干抗折强度、湿抗压强度、湿抗折强度、抗压软化系数、抗折软化系数分别为22.82 MPa、6.95 MPa、10.73 MPa、4.22 MPa、0.47、0.61,相较于未掺入分别提高18.85%、14.12%、46.79%、31.06%、23.68%、15.09%。  相似文献   

16.
王雪  倪文  李佳洁  刘冰  张思奇 《金属矿山》2007,48(5):192-196
为了揭示脱硫石膏对钢渣基碳化建材制品性能的影响,研究了不同养护时间、脱硫石膏掺量对试件抗压强度、固碳效果的影响,以及固碳效果对试件抗压强度的影响。结果表明:①脱硫石膏与钢渣的质量比为6.25%时可显著改善钢渣基试件的强度和养护效率,水胶比为0.2,成型压强为9 MPa的试块碳化养护1 d的抗压强度达到32 MPa。②随着脱硫石膏掺量的增加,单位质量试块固碳量降低,而单位质量钢渣固碳量增大。③1 d和3 d的固碳量与抗压强度基本呈正相关关系,这是由于钢渣的水化反应缓慢,对早期强度贡献不大,碳化反应对试块抗压强度尤其是早期强度起关键的促进作用。④成型压强为27 MPa的试件6 h、10 h固碳量分别达1 d固碳量的76.21%和87.54%,养护6 h的试件抗压强度超过25 MPa。因此,试块经过6 h的碳化养护就可以得到符合强度要求的碳化产品。  相似文献   

17.
为掌握不同掺量对石膏胶凝材料强度的影响规律,以建筑脱硫石膏等为原料,采用正交试验的方法制备石膏基复合胶凝材料,并建立影响其7 d抗压强度主要因素的BP神经网络模型,在此基础上对晶须掺量等不同影响因素的条件进行了优化。结果表明,各因素对石膏砌块7 d抗压强度的影响由小到大依次为水泥:矿渣掺量、减水剂掺量、缓凝剂掺量、中和渣掺量和晶须掺量;而利用BP神经网络模型优化后的工艺参数:晶须掺量为6.40%、聚羧酸减水剂掺量为1.28%、水泥:矿渣掺量为1:3、煅烧中和渣掺量为2.00%及柠檬酸缓凝剂掺量为0.114%。在此条件下,所得石膏胶凝材料的7 d抗压强度为14.62 MPa,与正交试验结果相比提高了2.024%;同时利用BP神经网络模型进行优化可在一定程度上降低外加剂的用量,其中聚羧酸减水剂、晶须和柠檬酸缓凝剂的掺量分别减少了0.12%、0.60%和0.006%。研究对石膏类废弃物的回收及其在矿山充填中的应用有一定的参考意义。  相似文献   

18.
研究了脱硫石膏掺量对混凝土性能的影响。结果表明:脱硫石膏掺量在30%以内时,混凝土工作性和强度均符合C30混凝土标准。脱硫石膏掺量在15%以内时,能改善混凝土流动性;而当掺量增加到20%后,混凝土需水量增加,流动性下降。随着脱硫石膏掺量增加,混凝土早期强度发展较快,后期强度增长缓慢,混凝土各龄期强度相对减小。脱硫石膏掺量在30%以内的混凝土可以用于一般建筑工程和道路工程。  相似文献   

19.
王雪  倪文  李佳洁  刘冰  张思奇 《金属矿山》2019,48(5):192-196
为了揭示脱硫石膏对钢渣基碳化建材制品性能的影响,研究了不同养护时间、脱硫石膏掺量对试件抗压强度、固碳效果的影响,以及固碳效果对试件抗压强度的影响。结果表明:①脱硫石膏与钢渣的质量比为6.25%时可显著改善钢渣基试件的强度和养护效率,水胶比为0.2,成型压强为9 MPa的试块碳化养护1 d的抗压强度达到32 MPa。②随着脱硫石膏掺量的增加,单位质量试块固碳量降低,而单位质量钢渣固碳量增大。③1 d和3 d的固碳量与抗压强度基本呈正相关关系,这是由于钢渣的水化反应缓慢,对早期强度贡献不大,碳化反应对试块抗压强度尤其是早期强度起关键的促进作用。④成型压强为27 MPa的试件6 h、10 h固碳量分别达1 d固碳量的76.21%和87.54%,养护6 h的试件抗压强度超过25 MPa。因此,试块经过6 h的碳化养护就可以得到符合强度要求的碳化产品。  相似文献   

20.
研究无碱液体速凝剂对不同石膏种类及掺量水泥性能的影响.凝结时间、抗压强度试验结果表明,随着水泥中石膏含量增加,水泥净浆凝结时间减少,砂浆1 d抗压强度略有增加;相同掺量下,掺二水石膏的水泥净浆凝结时间最短,掺半水石膏凝结时间最长,掺无水石膏的水泥胶砂1 d抗压强度最高,掺半水石膏抗压强度最低.水化温度、X射线衍射(XR...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号