首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
The structure of glasses in the x(0.16GaCh2 · 0.84GeCh2) · (1 − x)(SbCh1.5) (Ch = S, Se) system has been investigated using Raman scattering. The structure of glasses is interpreted as a superposition of the following structural units: Ge(Ga)Ch4/2, Ch3/2Ge(Ga)-Ge(Ga)Ch3/2, SbCh3/2, and -Ch-Ch-, where Ch = S and Se. The change in the fraction of the corresponding structural units with a change in the glass composition has been analyzed.  相似文献   

2.
The fracture toughness was measured by the Vickers indentation method and by chevron notch for a series of xCaO-xAl2O3-(100 − 2x)SiO2 glasses. As the silica content was increased, the fixed ξ value Vickers indentation fracture toughness (IFT) values increased, while the chevron notch values decreased. Glasses with higher silica contents deform with more densification and less shear when indented with a Vickers tip, thus resulting in reduced residual stress in the region surrounding the indent. The reduction in residual stress for high silica glasses results in less median/radial crack extension and unreasonably high Vickers IFT values. This indicates that a fixed ξ value of 0.016 is not appropriate for the glasses in this series. By repeating the IFT method with a sharper 110° four-sided pyramidal diamond indenter, it is demonstrated that indentation toughness and chevron notch toughness values now trend in the same direction and are in good agreement with a fixed ξ value of 0.0297. With the sharper indenter tip, the densification component to the deformation is substantially reduced for all glass types such that it no longer has such a prominent influence on the residual stress field. This result suggests that a fixed ξ value IFT method may be appropriate for all glass types if a sharper indenter tip is substituted in the place of the Vickers tip.  相似文献   

3.
Values of glass transition temperature (Tg) and of linear expansion coefficient (α) for Asx S100−x glasses were measured in the range of concentrations 35 × 42. Because of the importance of the glass formation region 35 × 42 for the optical fibers elaboration, special attention was made on high-pure Asx S100−x glasses. For the glass in the range of 35 × 38, we measure Tg with the interval of x equal to 1 at.% of arsenic. We also measured the Tg values with the interval of x equal to 0.5 at.% of As. We obtained nonlinear behavior of Tg, reflecting the change in molecular composition of As-S glass in the glass composition range studied. The control of such parameters is important to produce optical fibers with specific numerical aperture.  相似文献   

4.
The glass structure and photoluminescence of new oxyfluoride glasses with the composition of xMgF2–(66.7−2x/3)BaO–(33.3−x/3)B2O3 (= 10-50 mol%) were investigated in this work. The structure of the glasses was investigated by magic-angle spinning NMR, XAS, and Raman scattering spectroscopies. It was revealed that the glasses are mainly composed of BO3 units with a disconnected borate network consisting mainly of ortho- and pyro-borate units, and ortho-borate increases with the addition of MgF2. The fluorine atoms are surrounded by Mg2+ and Ba2+ ions. The photoluminescence of Eu3+-doped samples were investigated. It was indicated that asymmetry of the Eu3+ site increased with the addition of MgF2. The photoluminescence quantum yield (η) of the glasses are very high and increased with MgF2 addition; red photoluminescence is observed with η = 82% for 10MgF2 and η = 98% for 50MgF2 for excitation at 393 nm.  相似文献   

5.
For the first time, the Raman spectra of bulk SexTe1‐x glasses, 0.5 ≤  1.0, have been measured over the entire glass‐forming range. The spectra exhibit three broad spectral features between 150 and 300 cm?1, attributed to Te–Te, Se–Te, and Se–Se stretching modes according to DFT simulations. The observed weak chemical ordering in the glasses is discussed on the basis of heteropolar and homopolar bond fractions derived from integrated intensity of the Raman modes and DFT cross‐sections. The underlying structural model of the glasses suggests a random distribution of the Se–Se, Se–Te, and Te–Te chemical bonds with some preference for heteropolar bonding within Se–Te–Se structural units.  相似文献   

6.
Lithium and sodium aluminosilicates are important glass‐forming systems for commercial glass‐ceramics, as well as being important model systems for ion transport in battery studies. In addition, uncontrolled crystallization of LiAlSiO4 (eucryptite) in high‐Li2O compositions, analogous to the more well‐known problem of NaAlSiO4 (nepheline) crystallization, can cause concerns for long‐term chemical durability in nuclear waste glasses. To study the relationships between glass structure and crystallization, nine glasses were synthesized in the LixNa1‐xAlSiO4 series, from x = 0 to x = 1. Raman spectra, nuclear magnetic resonance (NMR) spectroscopy (Li‐7, Na‐23, Al‐27, Si‐29), and X‐ray diffraction were used to study the quenched and heat‐treated glasses. It was found that different LiAlSiO4 and NaAlSiO4 crystal phases crystallize from the glass depending on the Li/Na ratio. Raman and NMR spectra of quenched glasses suggest similar structures regardless of alkali substitution. Li‐7 and Na‐23 NMR spectra of the glass‐ceramics near the endmember compositions show evidence of several differentiable sites distinct from known LixNa1‐xAlSiO4 crystalline phases, suggesting that these measurements can reveal subtle chemical environment differences in mixed‐alkali systems, similar to what has been observed for zeolites.  相似文献   

7.
Diagram of the phase transformation behavior of GeS2–Ga2S3–CsI glasses is realized in this article and the structure‐property dependence of the chalcogenide glasses is elucidated using differential scanning calorimetry and Raman spectroscopy. We observe the compositional threshold of crystallization behavior locates at = 6–7 mol% in (100?x)(0.8GeS2–0.2Ga2S3)–xCsI glasses, which is confirmed by the thermodynamic studies. Structural motifs are derived from the Raman result that [Ge(Ga)S4], [S2GeI2], [S3GaI], and [S3Ga–GaS3] were identified to exist in this glass network. Combined with the information of structural threshold, local arrangement of these structural motifs is proposed to explain all the experimental observations, which provides a new way to understand the correlation between crystallization behavior and network structure in chalcogenide glasses.  相似文献   

8.
The influence of Nb2O5 on the structure and ionic conductivity of potassium phosphate glasses was investigated in glasses with composition xNb2O5–(100-x)[0.45K2O–0.55P2O5], x = 10–47 mol%. The Raman spectra of glasses reveal a transition from predominantly orthophosphate to predominantly niobate glass network with increasing Nb2O5 content. In the glass structure, niobium forms NbO6 octahedra which are interlinked with phosphate units for the glass containing 10 mol% Nb2O5, but for higher Nb2O5 content they become mutually interconnected via Nb-O-Nb bonds. The transport of potassium ions was found to be strongly dependent on the structural characteristics of the glass network. While the mixed niobate-phosphate glass network hinders the diffusion of potassium ions by providing traps that immobilize them and/or by blocking the conduction pathways, predominantly niobate glass network exhibits a rather facilitating effect which is evidenced in the trend of DC conductivity as well as in the features of the frequency-dependent conductivity and typical hopping lengths of potassium ions.  相似文献   

9.
Niobium alkali germanate glasses were synthesized by the melt‐quenching technique. The ternary system (90‐x)GeO2xNb2O5–10K2O forms homogeneous glasses with x ranging from 0 to 20 mol%. Samples were investigated by DSC and XRD analysis, FTIR and Raman spectroscopy, and optical absorption. Structural and physical features are discussed in terms of Nb2O5 content. The niobium content increase in the glass network strongly modifies the thermal, structural and optical properties of alkali germanate glasses. DSC, Raman and FTIR analysis suggest niobium addition promotes NbO6 groups insertion close to GeO4 units of the glass network. XRD analysis also pointed out that samples containing high niobium oxide contents exhibit preferential niobium oxide‐rich phase after crystallization after heat treatment, which is similar to orthorhombic Nb2O5. Absorption spectra revealed high transmission range between 400 nm to 6.2 μm, added to a considerably decreased hydroxyl group content as the addition of niobium in the alkali germanate network. The niobium oxide‐rich phase crystallization process was studied and activation energy was determined, as well as nucleation and crystal growth temperatures and time for obtaining transparent glass‐ceramics.  相似文献   

10.
Phosphate-based glasses of composition xNa2O−(45+(10−x))CaO−45P2O5 with different Na2O, CaO (= 1, 5, 10, 15, and 20 mol%), and invariable P2O5 (45 mol%) contents were prepared using the rapid melt quench technique. The obtained thermal data from differential thermal analysis revealed a decline in glass transition (Tg) and crystallization (Tc) temperatures of glasses against the compositional changes. The inclusion of Na2O at the cost of CaO in the glass network led to a reduction in its thermal stability. The thermal treatment carried out on glasses helped to derive their glass-ceramic counterparts. The amorphous and crystalline features of samples were characterized using X-ray diffraction patterns. The crystalline species that emerged out of the calcium phosphate phases confirmed the dominance of Q1 and Q2 structural distributions in the investigated glass-ceramics. The obtained scanning electron micrographs and atomic force microscopic images confirmed the surface crystallization and textural modification of the samples after thermal treatment. The N2-adsorption–desorption studies explored the reduction of porous structures due to thermal treatment on the melt-driven glass surface. The measured elastic moduli and Vicker's hardness values of the glasses showed an increase after thermal treatment, which were reduced against the inclusion of alkali content in both glass and glass-ceramics.  相似文献   

11.
Intermediate glasses show nearly constant elastic moduli with temperature and/or pressure. These glasses would prove useful in designing a-thermal optical fibers for enhanced telecommunication, fiber sensing applications, and in designing glass products for applications where a broad range of thermal and mechanical stimulation is expected. In this study, intermediate glasses belonging to the Na2O–SiO2, Na2O–Al2O3–SiO2, and Na2O–TiO2–SiO2 glass systems were identified from in situ high-temperature Brillouin light scattering (BLS) experiments. Glasses important for engineering applications like the international simple glass (ISG) and the less brittle glass (LBG) were also found to exhibit intermediate behaviors. In situ Raman spectroscopy was used to investigate their structural evolution from room temperature to temperatures beyond Tg. Raman spectra along with molecular dynamics simulations revealed common structural signatures that intermediate glasses with different compositions possess. Our study showed that the intermediate elastic behaviors come from a delicate balance between the stiffening effect associated with conformation changes in the medium-range flexible rings and the softening effect due to the weakening of short-range chemical bonds with temperature.  相似文献   

12.
《Ceramics International》2017,43(15):12205-12208
GeS2.5 chalcogenide glass was selected for studying effects of Ga addition on physical and structural properties. Glassy and partially crystallized samples of (100−x)GeS2.5xGa (5 mol% ≤ x ≤ 40 mol%) were prepared, and their thermal and optical properties were characterized. With increasing Ga content (x), values of Tg and optical band gap of glasses initially increased and then decreased, showing a maximal value at x = 25 mol%, that is, with stoichiometric composition of 85.7GeS2·14.3Ga2S3. These changes were discussed and correlated to evolution of network structure, which was investigated by Raman spectra recorded in glassy matrices of (100−x)GeS2.5xGa (5 mol% ≤ x ≤ 40 mol%). This work contributes to understanding of composition–structure–property relationship of chalcogenide glasses.  相似文献   

13.
We explored the structure and physical properties of Ge15Sb20Se65‐xSx (with x = 0, 16.25, 32.5, 48.75, and 65) glasses in order to screen the best compositions for the applications in photonics, since the laser damage thresholds in Se‐based glasses are too low although their optical nonlinearities are high. We found that, linear and nonlinear refractive index of the glasses decreased, but glass transition temperature Tg, optical bandgap Eg and the laser damage threshold increased with increasing S content. We further employed Raman scattering and high‐resolution X‐ray photoelectron spectra to probe the structure of the glasses. Through the analysis of the evolution of the different structural units in the glasses, it was concluded that, the heteropolar bonds (Ge–Se/S, Sb–Se/S) were dominated in these glasses. With the increase in chalcogen Se/S ratio, the number of the Se‐related chemical bonds (Ge–Se, Sb–Se and Se–Se) increased and that of S‐related chemical bond (Ge–S, Sb–S and S–S) decreased gradually, and Ge was prior to bond with S rather than Se. The elemental substitution thus had negligible effect on the glass structure. The change of the physical properties was mainly due to the difference of the strength of the chemical bonds between S–Ge(Sb) and Se–Ge(Sb).  相似文献   

14.
A polysulfone (PSF) hollow fiber composed of interconnected nanofibers within its wall was employed as a template to deposit with a layer of TiO2 by atomic layer deposition. Direct nitridation of the TiO2-coated PSF hollow fiber at 800 and 1000°C was conducted, and a new hierarchical structure of TiOxN1−x and TiN@nitrogen-doped carbon hollow fibers, respectively, was formed. The PSF fiber served as the source of carbon and was directly transformed to a nitrogen-doped carbon fiber because the shape change was confined by the TiO2 coating. In the meantime, TiOxN1−x or TiN was formed after the nitridation of TiO2. X-ray photoelectron spectrometric analysis indicated that there was no chemical bonding between the nitridized coating and the carbon nanofibers. It implies that the nitridation of TiO2 and carbonization of PSF proceed independently and simultaneously in the nitridation process. Raman spectroscopic analysis also confirmed the formation of graphitic lattice and Ti–N bonding. Electrical measurement indicated that both fibers were highly conductive, with the electrical resistivity in the order of 10−5 Ω m, which is lower than those of amorphous carbon and graphite along the direction perpendicular to the basal plane.  相似文献   

15.
The introduction of B atoms in SiOC glass networks has been achieved through the pyrolysis of sol-gel-derived polyborosiloxanes under an inert atmosphere. The starting gels were obtained from hydrolysis-condensation reactions of triethylborate (B(OEt)3) and an organically modified trialkoxysilane (EtSi(OEt)3). The resulting hybrid EtSiO1.5-B2O3 gels showed a homogeneous dispersion of the B atoms in the siloxane network via ≡Si—O—B≦ bonds. The presence of such borosiloxane bridges prevents the formation of cyclic or cage siloxane entities and leads to relatively high ceramic yields (∼80%). The transformation of the polyborosiloxanes into amorphous SiBOC glasses was followed using Fourier transform infrared spectroscopy and multinuclear magic-angle spinning-nuclear magnetic resonance (MAS-NMR) (11B, 13C, and 29Si). An important change in the carbon, silicon, and boron environments occurs during pyrolysis. Interestingly, the 11B MAS-NMR spectra suggest a progressive replacement of the B—O bonds by B—C bonds, which leads to a distribution of trigonal BCxO3−x sites in the glass that was pyrolyzed at 1000°C, with a residual amount of B(OSi)3 sites. The resulting glasses can thus be described as silicon-boron oxycarbide networks that are based on SiCxO4−x and BCyO3−y mixed environments.  相似文献   

16.
Thermal behavior, structural properties, and phase equilibria of the (100−x)TeO2-xNa2O system were studied in the 5 ≤  50 mol% composition range. Investigation of glass formation behavior in the binary system was realized, and the glass formation range was determined as 7.5 ≤  40 mol%. Differential thermal analysis (DTA) and Fourier transform infrared (FTIR) spectroscopy techniques were used for thermal and structural characterization of the glasses. Influence of Na2O content on glass transition temperature (Tg), glass stability (∆T), density (ρ), molar volume (VM), oxygen molar volume (VO), and oxygen packing density (OPD) values of sodium tellurite glasses was evaluated considering the structural transformations in the glass network. For the phase equilibria studies, DTA, X-ray diffraction (XRD), and scanning electron microscopy/energy dispersive X-ray (SEM/EDS) techniques were utilized to characterize the heat-treated samples. According to the phase equilibria studies, three eutectic regions were detected in the 0 < < 50 mol% composition range of the (100−x)TeO2-xNa2O system. A new invariant endothermic reaction was detected for the compositions between 40 ≤  45 mol%. Na2O.8TeO2 (11.11 mol% Na2O) compound that was claimed to exist in the binary system in the literature was found to be the metastable δ-TeO2 phase.  相似文献   

17.
Infrared (IR) and Raman spectroscopic features of silicate glasses are often interpreted based on the analogy with those of smaller molecules, molecular clusters, or crystalline counterparts; this study tests the accuracy and validity of these widely cited peak assignment schemes by comparing vibrational spectral features with bond parameters of the glass network created by molecular dynamics (MD) simulations. A series of sodium silicate glasses with compositions of [Na2O]x[Al2O3]2[SiO2]98−x with x = 7, 12, 17, and 22 were synthesized and analyzed with IR and Raman. A silica glass substrate and a crystalline quartz were also analyzed for comparison. Glass structures with the same compositions were generated with MD simulations using three types of potentials: fixed partial charge pairwise (Teter), partial diffuse charge potential (MGFF), and bond order-based charge transfer potential (ReaxFF). The comparison of simulated and experimental IR spectra showed that, among these three potentials tested, ReaxFF reproduces the concentration dependence of spectral features closest to the experimentally observed trend. Thus, the bond length and angle distributions as well as Si–Qn species and ring size distributions of silica and sodium silicate glasses were obtained from ReaxFF-MD simulations and further compared with the peak assignment or deconvolution schemes—which have been widely used since 1970s and 1980s—(a) correlation between the IR peak position in the Si–O stretch region (1050-1120 cm−1) and the Si–O–Si bond angle; (b) deconvolution of the Raman bands in the Si–O stretch region with the Qn speciation; and (c) assignment of the Raman bands in the 420-600 cm−1 region to the bending modes of (SiO)n rings with different sizes (typically, n = 3-6). The comparisons showed that none of these widely used methods is congruent with the bond parameters or structures of silicate glass networks produced via ReaxFF-MD simulations. This finding invokes that the adequacy of these spectral interpretation methods must be questioned. Alternative interpretations are proposed, which are to be tested independently in future studies.  相似文献   

18.
This work explored the permanent changes a high pressure (HP) processing could cause on nucleation, Raman vibrational modes, thermal, and mechanical properties of the Na2O • 2CaO • 3SiO2 (N1C2S3) glass. It was shown that, with higher pressure values, the number of nuclei per unit of volume, NV, has decreased. Raman spectra showed no significant changes in the vibrational modes; however, the differential thermal analysis performed indicated that the glass transition temperatures, Tg, were higher than the pristine glass sample and that HP caused the glass to be less stable. The Vickers indentation radial cracks remained constant; however, the lateral cracks increased in size, indicating that the glass is more stressed after HP, and therefore, the relaxation time for nucleation will be higher, lowering NV further, as observed.  相似文献   

19.
The pure and Mn-doped BiFe1−xMnxO3 (x = 0.00, 0.02, 0.05, 0.10) nanomaterials have been prepared by coprecipitation method. The powder X-ray diffraction pattern analysis shows a structural phase transformation from rhombohedral to orthorhombic, as Mn content in the doped BiFe1−xMnxO3 increases from x = 0.00 to 0.10. The Raman spectrum analysis of BiFe1−xMnxO3 also confirms structural phase transformation. The average crystallite size was calculated using the Scherrer formula and found to decrease from 100 to 60 nm. The surface structure of interconnecting cubic grain turns into spherical grains via petal-shaped grains with increasing the Mn-doping concentration. The value of dielectric constant at the frequency of 1 MHz increases rapidly from 27.2 to 76.8 whereas the tangent loss (tan δ) increases gradually from 0.26 to 0.55 as the Mn-doping concentration increases from x = 0.00 to 0.10. It reveals the enhancement of ferroelectric behavior and suppression of the leakage current density. The drastic change in the phase image contrast of magnetic force micrographs with increasing Mn-doping concentration in BiFe1−xMnxO3 also indicates the improvement of the ferromagnetism.  相似文献   

20.
Electrical switching in CuxAs40Se60−x glasses has been studied over a wide composition range for 0≤x≤32. The glasses with lower Cu concentrations (x<15) do not exhibit switching, whereas glasses in the range 15≤x≤25 show a threshold type switching. The glasses in the range 26≤x≤29 exhibited an unusual switching from low-resistance to high-resistance state. For x≥30, the glasses are found to show a memory switching. The thermally crystallized samples indicate that the structural network is characterized by Cu3AsSe4 and As2Se3 for x<15 and by Cu3AsSe4 and Cu2As3 for x≥25. The composition range 15≤x≤20 is characterized only by Cu3AsSe4 structural units. The samples cooled from their melt show only the ternary Cu3AsSe4 for x≤20. For x>20, precipitates of “As” have also been observed along with Cu3AsSe4 and Cu2As3 phases. The present studies provided a unique way to understand the electrical switching exhibited by chalcogenide glasses based on the thermal model and the filament formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号