首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究GH90高温合金的动态再结晶行为,在Gleeble 1500热模拟试验机上开展了不同温度和应变速率下的等温压缩试验。根据获得的真应力-真应变曲线分析可知,高温状态下GH90合金的主要动态软化机制为动态再结晶。通过对真应力-真应变数据进行分析和处理,构建了GH90合金的动态再结晶临界应变模型和体积分数模型。通过试样微观组织和模型预测结果的对比表明,所构建的GH90合金动态再结晶数学模型能够对GH90合金动态再结晶行为进行准确描述。  相似文献   

2.
GH625镍基高温合金动态再结晶模型研究   总被引:1,自引:0,他引:1  
在Gleeble热模拟机上对GH625合金进行了等温热压缩试验,获得了不同变形条件下该合金的真应力-真应变曲线,并对热压缩试样的微观组织进行了分析。通过对实验数据的计算,获得了GH625合金发生动态再结晶所需的临界变形量与变形温度和应变速率的函数关系;建立了合金动态再结晶的运动学方程,用该方程预测的动态再结晶体积分数与实测值吻合较好,误差的平均值为13%;构建了GH625合金的晶粒长大模型,用该模型预测的晶粒尺寸值与实测值之间的误差平均值为7.52%。GH625合金动态再结晶的形核方式主要为晶界弓出形核和亚晶合并长大形核。  相似文献   

3.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

4.
利用单道次等温压缩实验获得了锻态GH4742合金在变形温度为 1020~1150 ℃、应变速率为0.001~1 s-1、真应变为0.65时的真应力-应变曲线,构建了GH4742合金的热变形本构方程和热加工图,并采用SEM、EBSD等研究了热变形过程中微观亚结构以及γ′相的演变规律,建立了变形工艺条件-组织形态差异-性能变化之间的关联性。结果表明:合金的组织性能演化机制与Z参数密切相关,1080 ℃低温变形时,应变速率由0.001 s-1增加至1 s-1后,lnZ值由75.6增加至82.6,热效应增强,小角度晶界比例降低,动态再结晶比例增加,组织发生细化,基体硬度增加;1110 ℃高温变形时,随着应变速率增加,lnZ值由74增加至78.5,位错滑移和晶界迁移减缓,小角度晶界比例增加,动态再结晶比例降低,加工硬化程度增加,基体硬度增加。GH4742合金不发生动态再结晶晶粒粗化的临界lnZ值为73。结合热加工图和变形组织分析得出锻态GH4742合金良好的加工区域为变形温度1110~1150 ℃、应变速率0.01~0.1s-1。  相似文献   

5.
采用单道次等温压缩实验获得了GH4742合金在变形温度为980~1100℃,应变速率为0.005~5s~(-1)条件下的应力-应变曲线。以实验数据为基础,运用KM模型、Poliak-Jonas准则、Avrami模型较为系统地描述了该合金动态再结晶过程的流变应力、临界应变量、组织演化动力学等特征。并在Prasad功率耗散率模型的基础上,将动态再结晶组织转变体积分数引入其中,获得了动态再结晶过程的能量变化规律,借助微观组织表征技术,揭示了该合金动态再结晶机理。研究结果表明:GH4742合金随着变形温度的升高和应变速率的降低,动态再结晶临界应变量减小,组织转变体积分数增加。发生完全动态再结晶时的功率耗散率大于0.44,形成机制为位错诱导的连续动态再结晶。  相似文献   

6.
采用Gleeble-3500热模拟试验机进行高温等温压缩试验,研究了热变形参数对GH690合金晶粒细化的影响.结果表明:当变形程度较小时,随着真应变的增加,GH690合金动态再结晶的晶粒尺寸逐渐减小,但当真应变达到0.5后,随着真应变继续增加,动态再结晶晶粒尺寸变化不大;动态再结晶晶粒尺寸随变形温度的升高而增大,随应变速率的增大而减小.建立起热变形条件即Z参数与动态再结晶晶粒尺寸的关系.  相似文献   

7.
采用Gleeble3500D热模拟试验机研究了GH4720Li合金的高温热变形行为,分析了不同热压缩工艺条件下流变力学曲线特征,建立了表征材料流变力学特征的包含应变参量的双曲正弦型Arrhenius本构关系模型以及BP人工神经网络模型,并通过对材料热变形组织的表征,揭示了GH4720Li合金高温变形过程中的动态再结晶形核机制。结果表明,包含应变参量的双曲正弦型Arrhenius本构关系模型预测精度较差,而BP人工神经网络模型能很好地表征GH4720Li合金热变形过程中的流变力学行为,模型预测值与实验值的平均相对误差仅为0.814%。组织分析结果表明,GH4720Li合金在1140℃条件下动态再结晶的主要形核机制为非连续动态再结晶,变形晶粒的晶界为再结晶晶粒提供形核位置。  相似文献   

8.
采用热模拟压缩试验研究GH696合金在变形温度为880~1020℃、应变速率为0.01~10.0 s~(-1)、变形程度为30%~60%条件下的高温变形行为。采用金相显微镜对GH696合金高温压缩变形后的显微组织进行观察。结果表明:较高的变形温度和较低的应变速率有利于GH696合金的动态再结晶。采用加工硬化率-流动应力曲线确定GH696合金的动态再结晶临界应变,应用Avrami方程建立GH696合金的动态再结晶体积分数模型,并根据合金的金相定量试验结果建立GH696合金的动态再结晶晶粒尺寸模型。  相似文献   

9.
研究了镍基高温合金GH4700变形温度和应变速率对热变形行为的影响,建立了该合金的热变形本构方程和热加工图。结果表明:在变形温度1120~1210℃、应变速率0.01~20 s-1条件下,该合金的热变形流变曲线呈现出典型的动态再结晶型特征,存在稳态的流变应力,且随着变形温度的升高和应变速率降低,动态再结晶过程更充分;GH4700合金的热变形激活能为326.3165 kJ/mol;该合金在温度为1180~1210℃,应变速率为10~20 s-1的热压缩变形条件下,能量耗散率η值较高,大于0.30,显微组织发生完全动态再结晶,获得的组织晶粒细小且分布均匀。  相似文献   

10.
为阐明应变速率对GH690高温合金热变形特性的影响,采用Gleeble-3800热力模拟试验机,通过变形温度范围为1000~1200°C、应变速率范围为0.001~10 s~(-1)的等温热压缩实验研究了该合金的热变形行为。结果表明:流变应力对应变速率变化敏感,动态再结晶是主要的软化机制;0.1 s~(-1)是1000°C热变形过程中的临界应变速率。绝热温升使得动态再结晶过程与应变速率密切相关;应变速率对热变形过程中的非连续动态再结晶和连续动态再结晶具有显著影响;孪晶可促进动态再结晶形核,Σ3~n(n=1,2,3)晶界在中等应变速率0.1 s~(-1)条件下含量较低。  相似文献   

11.
GH625镍基合金的高温压缩变形行为及组织演变   总被引:2,自引:0,他引:2  
在Gleeble-1500D热模拟机上采用等温压缩实验研究GH625合金的高温压缩变形行为,获得合金在温度为1000~1200℃、应变速率为10-2~10s-1的条件下的真应力—应变曲线,并在考虑摩擦和变形热效应的基础上对真应力—应变曲线进行修正。对修正后的峰值应力进行线性回归,得到合金的高温材料常数:Q=635.38kJ/mol,α=0.008404MPa-1,n=3.52。通过非线性回归建立GH625合金包含应变量的高温变形本构模型。在应变速率为0.1s-1时,随着热变形温度的升高,合金发生动态再结晶的体积分数随之增加,在1000~1100℃发生部分动态再结晶,当温度达到1200℃时,发生完全动态再结晶,此时平均晶粒尺寸约为22.21μm。  相似文献   

12.
采用Gleeble-3500热压缩实验机对Mg-13Gd-4Y-2Zn-0.5Zr合金在温度360~480℃、应变速率0.001~1 s-1、最大变形程度为60%的条件下进行高温压缩实验研究。分析了应变速率和变形温度对该合金在高温变形时流变应力的影响,引入温度补偿应变速率因子Z构建合金高温流变应力的本构方程;研究了合金在不同压缩条件下的组织变化及动态再结晶晶粒尺寸,为后续有限元组织模拟提供了实验依据。结果表明:该合金的真应力-真应变曲线具有动态再结晶曲线的特征。动态再结晶的再结晶晶粒尺寸随温度的降低、应变速率的增大而减小;而且峰值应力也随再结晶晶粒尺寸的减小而增大。  相似文献   

13.
为了模拟难变形镍基高温合金GH4720Li开坯锻造过程,采用Gleeble-3800热模拟试验机研究经均匀化处理的GH4720Li铸锭高温压缩变形时的力学流动行为,分析高温变形过程中微观组织演化规律。结果表明,GH4720Li合金在1100℃,0.1 s-1条件下应力水平达到250 MPa,且应力对热变形温度和应变速率敏感,动态再结晶是主要的软化机制。粗晶组织提高了合金动态再结晶临界变形温度和应变速率,如在变形量为60%,变形条件为1140℃,0.001 s-1和1180℃,0.001s-1才能发生完全动态再结晶。计算的粗晶GH4720Li合金热变形激活能Q=1171kJ/mol,较高的热变形激活能表明粗晶组织不利于热塑性变形和动态再结晶的发生。基于本研究,铸态GH4720Li合金开坯温度应高于1140℃,同时保证较低的应变速率,以确保动态再结晶的充分发生,实现枝晶组织破碎。  相似文献   

14.
GH674高温合金的热变形行为   总被引:6,自引:1,他引:5  
采用Gleeble-1500热模拟机对GH674高温合金在应变速率为0.01s-1~1.0s-1、变形温度为950℃~1200℃、真应变为1的条件下的热变形行为进行了研究。结果表明,在试验研究的变形条件下,GH674型高温合金在热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的指数函数能较好地描述该合金高温变形时的流变行为;所获得的峰值应力热变形方程为σp=21.3139ln.ε+9.580495×105/Τ-538.11638;其热变形激活能Q为373.7102803kJ/mol。  相似文献   

15.
为研究选区激光熔化高温合金在高温下的塑性变形行为,对选区激光熔化制备的热等静压态GH3536高温合金进行热模拟压缩试验,获得了不同变形条件(变形温度为900、950、1000和1050℃;应变速率为0.01、0.1、1和10 s^(-1))下的高温真应力-真应变曲线,研究了该材料在高温条件下的载荷响应规律,并建立了基于Arrhenius方程的材料高温本构模型。研究发现,峰值应力随着应变速率的升高而升高,随着变形温度的升高而降低,最大峰值应力为592.8 MPa。基于Arrhenius方程建立了HIP状态下GH3536高温合金的高温本构方程,其预测精度的平均相对误差(AARE)为9.42%。通过组织观察发现,在高温变形过程中合金的组织被拉长,材料中有明显发生动态再结晶的迹象。  相似文献   

16.
通过对具有黑斑缺陷的Ti-55511合金进行不同温度和不同应变量的高温变形实验,采用OM和SEM/EBSD技术对显微组织进行观察,研究了合金高温变形过程中β晶粒的再结晶行为,分析了变形时微观组织演变对压缩应力-应变曲线的影响。结果表明:随着高温压缩应变增加,应力呈现两阶段不连续屈服现象;随着温度和应变的增加,连续动态再结晶和不连续再结晶逐渐显著,动态回复仍占主导作用;动态回复和动态再结晶耦合效应是应力下降的直接原因。  相似文献   

17.
在Gleeble热模拟机上对GH625合金进行了等温热压缩实验,获得了不同变形条件下该合金的真应力真应变曲线。利用DMM模型构建了GH625合金在不同应变量下的加工图,通过对加工图的分析,可以得到:GH625合金加工图中存在一个功率耗散效率较高的区域,其对应的变形温度为1100~1200℃,应变速率为0.01~1.0s-1,在该变形区域内,合金发生了完全动态再结晶。当功率耗散效率为0.4~0.45时,动态再结晶晶粒细小均匀;在峰值效率0.47时,动态再结晶晶粒出现明显的长大趋势;在低温高应变速率下存在一个较小的流变失稳区,该区域内的动态再结晶晶粒沿绝热剪切带分布。实际生产中工艺参数的制定应尽量选择在完全动态再结晶区内加工,避免在失稳区加工成型。基于GH625合金加工图及微观显微组织分析可得该合金的适宜加工区域为:ε=0.01~1.0s-1,T=1100~1200℃。  相似文献   

18.
以锻态GH4720Li镍基沉淀强化型高温合金为研究对象,对合金进行了不同工艺参数下的热压缩实验。采用OM、SEM、EBSD和TEM研究了热压缩过程中再结晶晶粒的形成和晶粒内亚结构的演变规律,分析了合金在不同热变形工艺参数下的动态软化机制。研究表明,合金在所有热变形工艺参数下均发生了非连续动态再结晶行为。变形组织分析表明,高温低应变速率能够抑制非连续动态再结晶行为的发生,而提高应变速率能促进非连续动态再结晶行为,且能够获得等轴状尺寸均匀的晶粒组织。未完全溶解细小γ'强化相的钉扎作用能够使变形晶粒内形成高密度位错亚结构和亚晶界,亚晶界角度通过连续的吸收位错而不断地升高,进而以"强化相诱发连续动态再结晶"方式形成细小的再结晶晶粒组织。不同热变形工艺下孪晶界的演变规律分析表明,热变形温度与应变速率通过影响合金的动态再结晶行为来改变孪晶界的数量。  相似文献   

19.
采用Gleeble-3800热模拟试验机热模拟压缩试验研究了GH2150合金在不同试验参数下的热变形行为和再结晶演变规律。结果表明,在1000~1200℃范围内,应变速率为0.1~5 s-1,变形量分别为30%、50%、70%条件下,合金峰值应力随变形温度升高而降低,随应变速率降低而降低。结合真应力-真应变曲线及阿伦尼乌斯公式得到了GH2150合金的热变形本构方程,采用该方程得到的计算结果与实际结果的平均相对误差为4.36%,相关系数R=0.992,具有较好的吻合性。绘制GH2150合金动态再结晶图发现大变形量有利于提高再结晶分数,合金再结晶行为在50%变形量下主要受变形温度影响,在70%变形量下采用低应变速率更有利于再结晶发生。  相似文献   

20.
为了模拟难变形镍基高温合金GH4720Li开坯锻造过程,采用Gleeble-3800热模拟试验机研究经均匀化处理的GH4720Li铸锭高温压缩变形时的力学流动行为,分析高温变形过程中微观组织演化规律。结果表明,GH4720Li合金在1100℃, 0.1 s~(-1)条件下应力水平达到250 MPa,且应力对热变形温度和应变速率敏感,动态再结晶是主要的软化机制。粗晶组织提高了合金动态再结晶临界变形温度和应变速率,如在变形量为60%,变形条件为1140℃, 0.001 s~(-1)和1180℃,0.001s~(-1)才能发生完全动态再结晶。计算的粗晶GH4720Li合金热变形激活能Q=1171kJ/mol,较高的热变形激活能表明粗晶组织不利于热塑性变形和动态再结晶的发生。基于本研究,铸态GH4720Li合金开坯温度应高于1140℃,同时保证较低的应变速率,以确保动态再结晶的充分发生,实现枝晶组织破碎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号