首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
济钢炼钢过程各环节钢水氮含量检测统计结果显示,连铸机浇注过程是钢水增氮的主要环节,而且氮含量高的炉次,铸坯的横裂纹检出率较高。对大包保护浇注装置进行优化改造,在引进大包免烘烤套管的同时,改造大包水口与套管结构,采用台式双密封、环形槽式吹氩,增强了密封效果。改进后,浇注过程增氮由20.0×10-6降为6.1×10-6,横裂纹检出率由3.61%降为1.08%。  相似文献   

2.
唐钢薄板坯连铸连轧钢液增氮的试验研究   总被引:3,自引:0,他引:3  
通过试验研究了150 t顶底复吹转炉-150 t LF炉-薄板坯连铸连轧流程钢液w(N)的变化.研究发现:转炉出钢、吹氩操作、LF炉精炼和连铸过程均可能增氮,自转炉出钢至LF炉精炼开始过程和钢水从大包进入中间包过程增氮最为严重,平均增氮都接近20×10-6.对影响钢液增氮的一些因素进行了讨论,提出了相应的改进措施.  相似文献   

3.
针对天铁热轧连铸钢水增氮量过高的现象,通过对连铸浇注过程进行分析探讨,找出了连铸工序钢水增氮量过高的原因.通过对连铸工序生产工艺、设备、耐材等方面进行改进,解决了钢水增氮量过大的问题,将连铸工序钢水增氮控制在5× 10-6以内,满足了高级别钢种对钢水质量的要求,为今后开发生产高附加值产品创造了条件.  相似文献   

4.
通过对连铸过程钢包、中间包、成材各个环节氮含量的分析,找出连铸过程的增氮规律,钢包到中间包平均增氮10.54×10-6,中间包到结晶器平均增氮4.5×10-6.通过采取对钢中的铝含量进行控制、氩封、水口保护和用好中包渣等措施,把连铸过程中齿轮钢的增氮量降到10×10-6以下。  相似文献   

5.
《炼钢》2014,(3)
介绍了河北省首钢迁安钢铁有限责任公司几年来在生产高强IF钢过程中对于氮成分控制方面所做的探索和研究,总结高强IF钢的生产技术和防止增氮技术。低氮钢的生产工艺包括转炉冶炼工序终点减少补吹次数和时间、合理控制复吹条件、顶渣改质造高氮容量渣;RH精炼工序处理中期快速提高真空度、提高循环氩气流量、真空室化冷钢及惰性气体保护技术、浸渍管防增氮改造。实践表明,通过这些技术的开发和应用,迁钢冶炼低氮钢平均氮质量分数目前稳定在15×10-6左右。  相似文献   

6.
较高的[N]含量会更容易析出氮化物,使得钢材的时效和蓝脆问题更加突出.本文基于钢液增氮热力学和动力学,从增氮机理入手,分析了 ER50-6焊丝钢生产过程中氮含量增加的影响因素,提出了降氮方案.通过炼钢全程吹氩工艺降低氧含量,LF精炼流程采用微正压环境降低氮含量,连铸过程保证长水口密封性等措施,ER50-6焊丝钢含氮量由...  相似文献   

7.
胡述戈  杜建民  郭少毅  王琦 《冶金分析》2004,24(Z1):385-387
对炼钢用增氮剂中氮的微波溶样方法进行了研究.采用不同的酸、压力、时间进行微波消解试验,确立了微波消解条件,并通过验证,样品中被测成分溶解完全.应用于增氮剂中氮化硅的溶解,效果较好.建立的增氮剂中氮的微波溶样方法简便、快速.  相似文献   

8.
通过对复吹转炉脱氮、出钢过程增氮、RH脱氮、连铸增氮的研究,结合武汉钢铁股份公司炼钢总厂三分厂冶炼汽车面板钢的实践,形成了一套全工序控制钢水氮的措施,使汽车面板钢成品氮质量分数控制在20×10-6以内,平均为17.64×10-6,最低为10×10-6。  相似文献   

9.
氧气瓶钢冶炼过程氮含量控制   总被引:1,自引:0,他引:1  
针对气瓶钢氮含量偏高,波动大,控制困难的问题,对炼钢工序全流程钢水中氮含量展开了调查.调查结果表明,转炉终点钢液氮含量偏高,增氮主要环节为转炉出钢过程和RH精炼结束到中包开浇.针对调查结果,提出了转炉低氮钢冶炼技术、出钢过程脱氧工艺优化及连铸保护浇注等技术措施,有效的降低了转炉终点氮含量,出钢增氮和浇注过程增氮也得到了有效的控制,使成品钢水中氮含量稳定控制在50×10-6以内,减小了氮对成品钢材性能的影响.  相似文献   

10.
X80管线钢冶炼关键工艺技术研究   总被引:1,自引:1,他引:0  
阐述了X80管线钢生产中氧、硫、氮和夹杂物控制的关键技术环节,X80管线钢溶解氧质量分数完全可以控制在(3~5)×10-6,钢中全氧基本上以夹杂物形式存在,可以通过钙处理、软吹、真空处理及中间包流场作用上浮去除,同时做好全流程的钢水保护;造好白渣,保持极低的钢中氧是控制钢中硫的关键,LF精炼初期一次配铝到位有助于快速脱硫;管线钢增氮关键环节为钢液面裸露和连铸保护不好增氮、转炉出钢过程增氮及LF精炼过程增氮,而真空处理过程对氮有很好的去除作用.管线钢夹杂物钙处理变性时要控制合适的铝、氧、硫、钙含量,X80管线钢溶解氧质量分数为(3~5)×10-6,1 600℃和1 650℃钢中可允许硫质量分数分别为(25.8~43.0)×10-6和(21.6~36.O)×10-6.  相似文献   

11.
比较“铁水预处理→BOF→RH→LF→板坯连铸机”和“铁水预处理→BOF→LF→RH→板坯连铸机”两种工艺路线生产管线钢精炼过程的增氮控制.结果表明,LF→RH比RH→LF生产工艺在精炼时增氮减少约5×10-6.因此从控制增氮角度上,生产管线钢优先选择LF→RH精炼工艺.  相似文献   

12.
季爱兵  储少军  马绍华  王玉刚  翟丹 《钢铁》2007,42(3):22-24,29
根据冶金热力学的计算结果,提出了钢液-气相界面可能发生的NH3和[O]、[S]耦合反应.该界面反应过程促使NH3在钢液界面生成易被钢液吸收的活性氮原子,同时,脱除了钢液中的氧、硫杂质元素,与常压下钢液吹氮增氮的工艺比较,可以取消为增氮而采用的钢液预脱氧、脱硫工艺环节,减少钢中非金属夹杂物的生成.10 kg中频感应炉的冶炼实验结果表明,合金成分相同的钢液供给等摩尔氮含量的氮化介质,NH3比N2的增氮效果提高了18%~75%.吹NH3条件下,钢液中保持一定量的氧、硫表面活性元素,有利于氮的吸收.  相似文献   

13.
对95增碳剂(0.10%N)、石油焦(0.93%N)和沥青焦(0.40%N)进行煅烧脱氮试验,试验结果表明:随煅烧温度的提高,3种增碳剂中的氮含量都下降,温度大于2 000℃时,各增碳剂中的氮含量均小于100×10-6。1 800℃煅烧时,95增碳剂的氮含量小于300×10-6,石油焦或沥青焦的氮含量小于100×10-6。  相似文献   

14.
针对本钢薄板坯铸机在生产无取向电工硅钢的过程中存在的铸坯拉断、中包增碳、增氮等问题,进行了连铸工艺优化。通过采用新型无碳中间包覆盖剂、环保中间包干式料及专用结晶器保护渣后,降低了铸坯增碳量;通过控制钢包到中间包的增氮环节,降低钢水增氮;适当增大二冷水量,控制钢水过热度,防止铸坯拉断等生产事故的发生。改进工艺后,精炼后到成品铸坯的平均增碳量能控制在10×10-6以内,平均增氮量能控制在4×10-6以内。  相似文献   

15.
以硅锰脱氧的SWRH82B热轧盘条为实验钢种,研究增氮析氮法对硅锰脱氧钢中夹杂物的去除效果,并设置0.02、0.035、0.05、0.065和0.08 MPa五组增氮压力进行热态实验.实验结果表明:在1873 K的温度下,钢液经过增氮20 min、真空处理30 min后,不同炉次钢中T[O]均下降至1×10-5以下,最低为4×10-6,T[N]均下降至5×10-6以下,最低为2×10-6,夹杂物去除率均为40%以上,T[O]去除率均大于78%,表明该技术对硅锰脱氧钢中的夹杂物及T[O]有良好的去除效果.此外,随着增氮压力的升高,钢中T[O]与夹杂物去除率均有所升高,当充氮压力为0.08 MPa时,T[O]与夹杂物去除率分别达到89.2%和87.4%.理论分析表明,随着增氮压力的升高,气泡形核率增大、钢中生成气泡数量增多、钢中气泡的密度增加,从而提升气泡去除夹杂物的效率.   相似文献   

16.
黄德胜  杨森祥  李桂军 《炼钢》2012,28(2):14-16,28
介绍了攀钢集团攀枝花钢钒有限公司提钒炼钢厂采用"BOF→LF→CC"工艺生产铝脱氧钢过程的氮含量情况,分析了LF精炼过程中钢水增氮的主要影响因素,其中钢种的成分特性、加热时的埋弧效果和吹氩喂线等操作对钢水增氮有较大影响。提出了相应的控制措施,通过加强埋弧操作、合理变化加热档位、稳定吹氩等措施,很好的控制了LF精炼过程钢水的增氮,LF增氮质量分数能稳定控制在2×10-6以内。  相似文献   

17.
刘志龙  王冠  邓长付 《南方金属》2021,(1):28-30,33
对板坯钢水冶炼过程中的增氮环节进行分析,主要包含转炉冶炼,LF精炼过程增氮,RH真空脱氮和连铸增氮情况,统计分析转炉、精炼、RH和连铸浇注过程的氮含量变化情况,识别影响钢水氮含量的关键因素,对异常增氮环节进行优化和改进,有效降低板坯钢水的氮含量.  相似文献   

18.
通过氮气-氧气混合吹炼工艺的开发,有效地改善了转炉吹炼火点区增氮的热力学、动力学条件。转炉吹炼终点钢液氮含量由55×10~(-6)提高至153.2×10~(-6),增氮效果显著。使用钒铁合金代替进口钒氮合金(Nitrovan)进行合金化,所生产的连铸坯氮含量由原工艺的95.3×10~(-6)升高至153.3×10~(-6),轧制的棒材成品屈服强度由450.4MPa升高至465.2 MPa。经验证,此增氮工艺对产品时效性能无影响。  相似文献   

19.
分析了南京钢铁公司100t高阻抗电弧炉→100t钢包精炼炉→150mm×150mm方坯连铸工艺流程生产GCr15轴承钢各阶段钢中氮含量的变化及其影响因素。实践表明,为降低轴承钢中氮含量,采取电炉兑入铁水量在55%以上和泡沫渣操作,EAF出钢时钢中氮的质量分数平均达到29×10-6;LF精炼采用大渣量埋弧操作、氩气搅拌,该过程平均增氮质量分数为21.8×10-6;VD吹氩过程平均脱氮量为15×10-6;全程保护浇铸有效控制平均增氮质量分数为6.3×10-6。LF精炼过程增氮对整个过程控制至关重要,应加强LF精炼的工艺优化。  相似文献   

20.
李艳  吕亚  刘磊  王平  王小峰  张书铭 《宽厚板》2013,19(3):34-37
安钢第二炼轧厂采用铁水预处理-顶底复吹转炉(BOF)-吹氩站-LF精炼炉-VD精炼炉-超宽板坯连铸机的工艺路线来生产X65管线钢。通过试验分析并结合实际冶炼情况找出影响钢液增氮的主要因素。增氮的主要环节为转炉(BOF)出钢、LF精炼、连铸机浇注3个环节,增氮的主要原因为钢液裸露、生产周期过长、物料带入及生产操作不规范等。通过采取增加VD工序等一系列措施,可将氮控制在(35~60)×10-6,满足了X65管线钢对[N]含量的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号