首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the transporting square nosed slugging fluidization regime () a bed of polyethylene powder with a low density () and a large particle size distribution () was operated in two circulating fluidized bed systems (riser diameters 0.044 and 0.105 m). A relation was derived for the plug velocity as a function of the gas velocity, solids flux, riser diameter, particle size range and particle and powder properties. The influence of the plug length on the plug velocity, the raining rate of solids onto and from the plugs and the influence of the particle size range on the plug velocity is accounted for.  相似文献   

3.
Impact attrition of limestone particles was investigated at temperatures from 25 to and 1 atm pressure. Impacts changed the particle size distribution and mean particle diameter significantly for conveying gas velocities of 20-100 m/s. With increasing temperature less attrition occurred due to a decrease in particle impact velocity and an increase in the threshold particle impact velocity. The activation energy for impact attrition was . The mean limestone particle diameter decreased with increasing number of impacts and increasing impact velocity. Two empirical equations give good agreement with the experiments. Based on the experimental observations and correlations, an impact mechanism is suggested, where the area of new surface generated is proportional to the total kinetic energy consumed, to the number of impact cycles and an exponential decrease with temperature. When particles break, each particle generally splits into 2-3 daughter particles. The threshold particle velocities for breaking limestone particles were found to be at , similar to the reported literature values.  相似文献   

4.
This paper presents a study of particle residence time near the walls of gas fluidized beds by DEM simulation. The simulation experiments were performed in two beds, one of cross-section and the other of cross-section. The particles used were 0.5 and in diameter and in density. The number of particles used was 600,000 and 500,000 for simulations of the 0.5 and diameter particles, respectively. The advantage of this approach is that it enables an unprecedented amount of information pertaining to the motion of individual particles near the walls of a fluidized bed to be obtained. These include the distribution of particle residence time, mean residence time, contact frequency, and contact distance at the walls. Variations of particle residence time with particle size, gas velocity, and wall position are examined. Significance of the results to modelling of particle-to-wall heat transfer in fluidized beds is highlighted.  相似文献   

5.
A particle reaction model including mass and heat transfer has been developed to know the temperature variations produced inside the oxygen carrier particles during the cyclic reduction and oxidation reactions taking place in a chemical-looping combustion (CLC) system. The reactions of the different oxygen carriers based on Cu, Co, Fe, Mn, and Ni during the reduction with fuel gas (CH4, CO, and H2) and oxidation (O2) have been considered. In these systems, the oxidation reaction is always exothermic with subsequent heat release; however, the reduction reaction can be exothermic or endothermic depending on the metal oxide and the fuel gas. The heat generated inside the oxygen carriers during the exothermic reactions increases the particle temperature, and could affect the particle structure if the temperature increase is near to the melting point of the active materials. Several variables that affect the reaction rate and the heat transport process have been analyzed to know their effect on the internal particle temperature. For a given oxygen carrier and reaction, the maximum temperature of the particles depended mainly on the particle size, the reaction rate, and the external heat transfer resistance, being lower than the effect of the oxygen carrier porosity, type of inert material, and metal oxide content. The highest temperature variations were reached for the oxidation reactions, with the maximum corresponding to the Ni and Co oxygen carriers with values of for particles. The highest temperature increase observed during the reduction reactions corresponded to the reaction of CuO with CO, with values of for particles. For the rest of the reactions and metals, the variations in the particle temperature were below for particle sizes below . Under the typical operating conditions that exist in a CLC system, with particle sizes lower than , % of metal oxide content, and overall conversion times lower than , the increases of temperature with respect to the bulk conditions were lower than for any reaction of any oxygen carrier. Moreover, the temperature profiles inside the particles were near flat in most of the practical conditions, and no local points with high temperatures were found. Thus, changes in the solid porous structure of the carrier due to sintering during oxidation in fluidized bed reactors are not expected working at typical temperatures of CLC systems (1000-).  相似文献   

6.
A generalized dimensionless formulation has been developed to predict the spatial distribution of microwave power and temperature. The ‘dimensionless analysis’ is mainly based on three numbers: wave number, ; free space wave number, ; and penetration number, , where is the ratio of sample thickness to wavelength of microwaves within a material, is based on wavelength within free space and is the ratio of sample thickness to penetration depth. The material dielectric properties and sample thicknesses form the basis of these dimensionless numbers. The volumetric heat source due to microwaves can be expressed as a combination of dimensionless numbers and electric field distributions. The spatial distributions of microwave power for uniform plane waves can be obtained from the combination of transmitted and reflected waves within a material. Microwave heating characteristics are obtained by solving energy balance equations where the dimensionless temperature is scaled with respect to incident microwave intensity. The generalized trends of microwave power absorption are illustrated via average power plots as a function of , and . The average power contours exhibit oscillatory behavior with corresponding to smaller for smaller values of . The spatial distributions of dimensionless electric fields and power are obtained for various and . The spatial resonance or maxima on microwave power is represented by zero phase difference between transmitted and reflected waves. It is observed that the number of spatial resonances increases with for smaller regimes whereas the spatial power follows the exponential decay law for higher regimes irrespective of and . These trends are observed for samples incident with microwaves at one face and both the faces. The heating characteristics are shown for various materials and generalized heating patterns are shown as functions of , and . The generalized heating characteristics involve either spatial temperature distributions or uniform temperature profiles based on both thermal parameters and dimensionless numbers ().  相似文献   

7.
The macroscopic adsorption behavior of dissolved oxygen on a coconut shell-derived granular activated carbon has been studied in batch mode at 301 and 313 K for initial dissolved oxygen concentrations of 10-30 mg/l and oxygen/carbon ratios of 2-180 mg/g. BET (Brunauer, Emmett, and Teller) surface area, micropore volume, and pore size distribution were determined from N2 isotherm data for fresh and used samples of carbon. The surface groups were characterized using Boehm titrations, potentiometric titrations, and FTIR study. The material is characterized by its high specific surface area , microporocity (micropore volume ), its basic character ( total basic groups) and its high iron content (15,480 ppm Fe). BET n-layer isotherm describes adsorption equilibrium suggesting cooperative adsorption and important adsorbate-adsorbate interactions. Kinetic data suggest a process dependent on surface coverage. At low coverage a Fickian, intraparticle diffusion rate model assuming a local equilibrium isotherm (oxygen dissociation reaction) adequately describes the process. The calculated diffusion coefficients (D) vary between and for initial oxygen concentration of 10 and 20 mg/l, respectively. Sensitivity analysis shows that the oxygen dissociation equilibrium constant determines the equilibrium concentration, whereas the diffusion coefficient controls the kinetic rate of the adsorption process having no effect at the final equilibrium concentration. A combined kinetic mass transfer model with concentration-dependent diffusion (parabolic form) has been developed and successfully applied on the dissolved oxygen adsorption system at high surface coverage. For equilibrium uptake of the estimated mean mass transfer coefficient and adsorption rate constant are and , respectively.  相似文献   

8.
9.
10.
Interfacial area concentration of bubbly flow systems   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
14.
Based on airlift configuration, a novel circulating jet-loop submerged membrane bioreactor (JLMBR) adapted to ammonium partial oxidation has been developed. Membrane technology and combined air and water forced circulation are adopted to obtain a high biomass retention time and to achieve a separate control of mixing and aeration. This study is intended to determine how gas-liquid mass transfer is affected by operating conditions. In a first approximation, liquid was assumed to be perfectly mixed. A classical non-steady state clean water test, known as the “gas out-gas in” method, was used to determine the gas-liquid mass transfer coefficient kLa. Air and recirculated liquid superficial velocities were gradually increased from 0.013 to and 0.0056 to , respectively. Subsequently, the gas-liquid mass transfer coefficient kLa varied from 0.01 to . It appears to be influenced by the combined action of air and recirculated liquid flowrates in the range and , respectively, for air and liquid. Correlations are proposed to describe this double influence. Experiments were performed on tap water and a culture medium used for the autotrophic growth of nitrifying bacteria, respectively. Oxygen transfer appeared to be not significantly affected by the mineral salt encountered in this medium.  相似文献   

15.
A spouted bed is simulated in three dimensions by a discrete element method (DEM) in a cylindrical coordinate system. The numerical scheme is based on a second order finite difference method in space and a second order Adams-Bashforth method for time advancement. Gas-particle interaction is assumed to obey the Ergun equation (for void fraction less than 0.8) and its corrected model by Wen and Yu (for void fraction greater than 0.8). The spouted bed vessel is a flat-bottomed cylinder in height and in diameter. The gas inlet diameter is . Three hundred thousand monosized spheres of diameter are used in the simulation. The typical characteristics of spouted beds, such as spout, annulus and fountain, are reproduced. Particle velocity profiles show good agreement with experimental results and self-similarity of the radial distribution of axial particle velocities is reported. Gas flow patterns are also studied and the effect a vortex ring fixed at the bottom of the vessel is investigated. The simulation is validated through comparisons with results reported in the literature.  相似文献   

16.
17.
IR optical properties of Pd nanoparticles with different size and aggregation state were studied in the current paper. The dispersed Pd nanoparticles () stabilized with poly(N-vinylpyrrolidone) (PVP) were synthesized by the seeding growth method, in which the seeds were formed step by step through reducing H2PdCl4 with ethanol. The dispersed Pd nanoparticles of much large size () were grown from the by keeping the colloid of undisturbed for 150 days at room temperature around 20 °C. The aggregates of () were prepared through an agglomeration process induced during a potential cyclic scanning between −0.25 V and 1.25 V for 20 min at a scan rate of 50 mV s−1. Scanning electron microscope (SEM) patterns confirmed such aggregation of . Fourier transform infrared (FTIR) spectroscopy together with CO adsorption as probe reaction was employed in studies of IR optical properties of the prepared Pd nanoparticles. The results demonstrated that CO adsorbed on films substrated on CaF2 IR window or glassy carbon (GC) electrode yielded two strong IR absorption bands around 1970 cm−1 and 1910 cm−1, which were assigned to IR absorption of CO bonded on asymmetric and symmetric bridge sites, respectively. Similar IR bands were observed in spectra of CO adsorbed on films, except the IR bands were much weak, whereas CO adsorbed on film produced an IR absorption band near 1906 cm−1, and an anomalous IR absorption band whose direction has been completely inverted around 1956 cm−1. The direction inversion of the IR band of CO bonded to asymmetric bridge sites on was ascribed to the interaction between Pd nanoparticles inside the aggregates. Based on FTIR spectroscopic and cyclic voltammetric results, the aggregation mechanism of Pd nanoparticles from to has been suggested that the agglomeration of Pd nanoparticles was driven by the alteration of electric field across electrode-electrolyte interface, when the PVP stabilizer was stripped via oxidation during cyclic voltammetry.  相似文献   

18.
19.
Bailing Liu  James T. Guthrie 《Polymer》2005,46(17):6293-6299
The synthesis of hyperbranched poly(methyl methacrylate) (PMMA) via reversible addition fragmentation chain transfer (RAFT) polymerization was investigated by varying the ratio chain transfer agent (CTA): monomer (methyl methacrylate, MMA): brancher (ethylene glycol dimethyl methacrylate, EGDMA): free radical initiator (AIBN) at various temperatures (50, 55, 60, 65, 70 °C). The rate of polymerization was observed to increase with temperature and concentration in brancher, whilst it was lowered by an increase in chain transfer agent concentration. The molecular weight of the samples increased with the ratios brancher: CTA and monomer: CTA. The polydispersity of the samples increase with conversion, as the level of branching increases. At fixed concentration in brancher, an increase of CTA concentration led to polymers with lower PDI. The variation of enthalpy and entropy relative to the monomer reaction were calculated, and it was observed that an increase in the brancher concentration induced an increase in both and , whilst lower CTA concentrations led to an increase in . The variation in Gibbs energy for the monomer reaction was calculated at 60 °C, and results confirmed the presence of a retardation effect when increasing CTA concentration generally observed in RAFT polymerization.  相似文献   

20.
Anodic dissolution of poly- and single-crystals of zinc was performed in methanol solution of lithium perchlorate by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The mechanism of anodic dissolution of zinc in organic solvents occurs in two oxidation steps. It is the first step that surface anodic product is created. Stability of the surface product is much better in anhydrous organic environments than in aqueous media; because the product is stable, a barrier layer composed of is formed at low anodic overvoltage. The formation of the layer is much stronger on the low index than on the high-index plane (0 0 0 1), where the adsorption of anodic product is more difficult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号