首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
2.
A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO2 concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO2 concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

3.
A series of spinel Li4Ti5O12 samples were synthesized via a composite molten-salt method (CMSM) using the mixtures of LiCl and KCl with different L values (L is defined as the molar ratio of LiCl:KCl) as the reaction media. It is found that the melting point of the composite molten salt can effectively influence the formation of particles, and leads to different electrochemical performances of the as-prepare Li4Ti5O12. The investigations of X-ray diffraction (XRD), particle size distribution (PSD), Brunauer-Emmet-Teller (BET) surface area, and scanning electron microscopy (SEM) indicate that the as-prepared Li4Ti5O12 with L = 1.5 is a pure phase, and has uniform homogeneous octahedral shape particles, rather narrow PSD, and high BET surface area. Electrochemical tests show that the optimized Li4Ti5O12 with L = 1.5 has an initial discharge capacity of 169 mAh g−1 and an initial charge-discharge efficiency of 94% at 0.2 C rate, and achieves good rate performances from 0.2 C to 5 C.  相似文献   

4.
LiNi1−xCoxO2 (x = 0, 0.1, 0.2) cathode materials were successfully synthesized by a rheological phase reaction method with calcination time of 0.5 h at 800 °C. All obtained powders are pure phase with α-NaFeO2 structure (R-3m space group). The samples deliver an initial discharge capacity of 182, 199 and 189 mAh g−1 (25 mA g−1, 4.35-3.0 V), respectively. The reaction mechanism was also discussed, which consists of a series of defect reactions. As a result of these defect reactions, the reaction of forming LiNi1−xCoxO2 takes place in high speed.  相似文献   

5.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

6.
Li2Fe1−xMnxSi04/C cathode materials were synthesized by mechanical activation-solid-state reaction. The effects of Mn-doping content, roasting temperature, soaking time and Li/Si molar ratio on the physical properties and electrochemical performance of the Li2Fe1−xMnxSi04/C composites were investigated. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM), charge-discharge tests and AC impedance measurements. SEM images suggest that the morphology of the Li2Fe1−xMnxSi04/C composite is sensitive to the reaction temperature. Samples synthesized at different temperatures have different extent of agglomeration. Being charged-discharged at C/32 between 1.5 and 4.8 V, the Li2Fe0.9Mn0.1Si04/C synthesized at the optimum conditions shows good electrochemical performances with an initial discharge capacity of 158.1 mAh g−1 and a capacity retention ratio of 94.3% after 30 cycles. AC impendence investigation shows Li2Fe0.9Mn0.1SiO4/C have much lower resistance of electrode/electrolyte interface than Li2FeSiO4/C.  相似文献   

7.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

8.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

9.
Ba0.8Sr0.2Ti1−5x/4NbxO3 ceramics, x = 0, 0.01, 0.05, 0.10, were fabricated by conventional solid-state reaction. With increasing niobium content the ferroelectric phase transition temperature decreases linearly, and the dispersivity of the transition increases. Niobium B-site decreases transition temperature more pronounced than Sr2+ at A-site. The heterovalent substitution of Nb5+ in low content causes local defect dipole, while more substitutions introduce disorder to disturb the long-range dipole correlation. Ba0.8Sr0.2Ti1−0.5/4Nb0.1O3 ceramic shows weak ferroelectric loop at room temperature far from its transition temperature, 153 K.  相似文献   

10.
Br-doped Li4Ti5O12 in the form of Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) compounds were successfully synthesized via solid state reaction. The structure and electrochemical properties of the spinel Li4Ti5O12−xBrx (0 ≤ x ≤ 0.3) materials were investigated. The Li4Ti5O12−xBrx (x = 0.2) presents the best discharge capacity among all the samples, and shows better reversibility and higher cyclic stability compared with pristine Li4Ti5O12, especially at high current rates. When the discharge rate was 0.5 C, the Li4Ti5O12−xBrx (x = 0.2) sample presented the excellent discharge capacity of 172 mAh g−1, which was very close to its theoretical capacity (175 mAh g−1), while that of the pristine Li4Ti5O12 was 123.2 mAh g−1 only.  相似文献   

11.
Cathode material LiFePO4 with an excellent rate capability has been successfully prepared by a simple solid state reaction method using LiCH3COO·2H2O, FeC2O4·2H2O and (NH4)2HPO4 as the starting materials. We have investigated the effects of the sintering temperature and mixing time of the starting materials on the physical properties and electrochemical performance of LiFePO4. It was found that the rate capability of LiFePO4 is mainly controlled by its specific surface area and it is an effective way to improve the rate capability of the sample by increasing its specific surface area. In the present study, our prepared LiFePO4 with a high specific surface area of 24.1 m2 g−1 has an excellent rate capability and can deliver 115 mAh g−1 of reversible capacity even at the 5 C rate. Moreover, we have prepared lithium ion batteries based on LiFePO4 as the cathode material and MCMB as the anode material, which showed an excellent cycling performance.  相似文献   

12.
Y.S Lee  K Adachi 《Electrochimica acta》2003,48(8):1031-1039
Well-defined orthorhombic LiMnO2 was synthesized using LiOH and γ-MnOOH starting materials at 1000 °C in an argon flow by quenching process. X-ray diffraction (XRD) revealed that the compound showed an orthorhombic phase of a space group with Pmnm (a=2.806 Å, b=5.750 Å, and c=4.593 Å). The prepared compound was composed of particles of about 5-15 μm diameter with a bar-shape and small spherical one of about 1-2 μm. It showed very small initial discharge capacity of about 34 mA h g−1 in the (3+4) V region at room temperature. However, after 12 h grinding, the LiMnO2 delivered 201 mA h g−1 in the first cycle and still delivered 200 mA h g−1 after 50 cycles at room temperature. We found that the initial discharge capacity of LiMnO2 agreed well with its specific surface area by Brunauer, Emmett and Teller (BET) analysis. Especially, the grinding treatment played an important role to activate the lithium insertion-extraction into the LiMnO2 layer in the 3 V region.  相似文献   

13.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

14.
α-MnO2 has been made using a solid state synthesis and the specific surface area then modified through milling. The formation of α-MnO2 (specific surface area 96 m2 g−1) has been studied by SEM and powder XRD prior to milling. Electrode films (cast using MnO2, graphite and PVDF) have been investigated using N2 sorption at 77 K and show a more complex relationship than their parent oxides. Specific capacitances of 235 F g−1 were observed in cyclic voltammetry studies in (NH4)2SO4 (aq.) electrolyte. Good cyclability was observed in hybrid C/MnO2 cells investigated through both galvanostatic and electrochemical impedance techniques. The specific capacitances of the cells were found to correlate with SBET of the electrode films and not that of the parent MnO2 powders.  相似文献   

15.
LiCoxMn1−xPO4/C nanocomposites (0 ≤ x ≤ 1.0) were prepared by a combination of spray pyrolysis at 300 °C and wet ball-milling followed by heat treatment at 500 °C for 4 h in 3% H2 + N2 atmosphere. X-ray diffraction analysis indicated that all samples had the single phase olivine structures indexed by orthorhombic Pmna. The lattice parameters linearly decreased with increasing cobalt content, which confirmed the existence of solid solutions. It was clearly seen from the scanning electron microscopy observation that the LiCoxMn1−xPO4/C samples were agglomerates with approximately 100 nm primary particles. The LiCoxMn1−xPO4/C nanocomposites were used as cathode materials for lithium batteries, and electrochemical performance was comparatively investigated with cyclic voltammetry and galvanostatic charge–discharge test using the Li?1 M LiPF6 in EC:DMC = 1:1?LiCoxMn1−xPO4/C cells at room temperature. The cells at 0.05 C charge–discharge rate delivered first discharge capacities of 165 mAh g−1 (96% of theoretical capacity) at x = 0, 136 mAh g−1 at x = 0.2, 132 mAh g−1 at x = 0.5, 125 mAh g−1 at x = 0.8 and 132 mAh g−1 (79% of theoretical capacity) at x = 1.0, respectively. While the first discharge capacity increased with the cobalt content at high charge–discharge rates more than 0.5 C due to higher electronic conductivity of LiCoPO4 in comparison with LiMnPO4, the cycleability of cell became worse with increasing the amount of cobalt. The existence of Mn2+ seemed to enhance the cycleability of LiCoxMn1−xPO4/C nanocomposite cathode.  相似文献   

16.
A novel nanostructured mesoporous CoxNi1−x layered double hydroxides (CoxNi1−x LDHs), which both Co(OH)2 and Ni(OH)2 exhibit, has been successfully synthesized by a chemical co-precipitation route using polyethylene glycol as the structure-directing reagent. Structural and morphological characterizations were performed using powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The component and thermal stability of the sample were measured by energy dispersed X-ray spectrometry (EDS), FT-IR and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA). Cyclic voltammogram and galvanostatic charge-discharge testified that the CoxNi1−x LDH has a specific capacitance of 1809 F g−1 at a current density of 1 A g−1 and remains at about 90.2% of the initial value after 1000 cycles at a current density of 10 A g−1. The relationship between the chemical composition and the capacitance is discussed.  相似文献   

17.
Highly crystalline spinel LiMn2O4 was successfully synthesized by annealing lithiated MnO2 at a relative low temperature of 600 °C, in which the lithiated MnO2 was prepared by chemical lithiation of the electrolytic manganese dioxide (EMD) and LiI. The LiI/MnO2 ratio and the annealing temperature were optimized to obtain the pure phase LiMn2O4. With the LiI/MnO2 molar ratio of 0.75, and annealing temperature of 600 °C, the resulting compounds showed a high initial discharge capacity of 127 mAh g−1 at a current rate of 40 mAh g−1. Moreover, it exhibited excellent cycling and high rate capability, maintaining 90% of its initial capacity after 100 charge-discharge cycles, at a discharge rate of 5 C, it kept more than 85% of the reversible capacity compared with that of 0.1 C.  相似文献   

18.
A nano-LiFePO4/C composite has been directly synthesized from micrometer-sized Li2CO3, NH4H2PO4, and FeC2O4·2H2O by the lauric acid-assisted solid-state reaction method. The SEM and TEM observations demonstrate that the synthesized nano-LiFePO4/C composite has well-dispersed particles with a size of about 100–200 nm and an in situ carbon layer with thickness of about 2 nm. The prepared nano-LiFePO4/C composite has superior rate capability, delivering a discharge capacity of 141.2 mAh g−1 at 5 °C, 130.9 mAh g−1 at 10 C, 121.7 mAh g−1 at 20 °C, and 112.4 mAh g−1 at 30 °C. At −20 °C, this cathode material still exhibits good rate capability with a discharge capacity of 91.9 mAh g−1 at 1 °C. The nano-LiFePO4/C composite also shows excellent cycling ability with good capacity retention, up to 100 cycles at a high current density of 30 °C. Furthermore, the effect of lauric acid in the preparation of nano-LiFePO4/C composite was investigated by comparing it with that of citric acid. The SEM images reveal that the morphology of the LiFePO4/C composite transformed from the porous structure to fine particles as the molar ratio of lauric acid/citric acid increased.  相似文献   

19.
The investigation of hydro-conversion behavior of the heavy intermediate products derived from coal direct liquefaction is advantageous to optimize the technological conditions of direct coal liquefaction and improve the oil yield. In this paper, the hydro-conversion of preasphaltenes catalyzed by SO42−/ZrO2 solid acid was investigated based on the structural characterization of preasphaltenes and its hydro-conversion products, and the determination of products distribution and the kinetics of preasphaltenes hydro-conversion. The results indicated that the content of condensed aromatic rings increased, and the contents of hydrogen, oxygen and aliphatic side chains of preasphaltenes decreased with the increase of coal liquefaction temperature. The preasphaltenes showed higher hydro-conversion reactivity while SO42−/ZrO2 solid acid was used as catalyst. Higher temperature and longer time were in favor of increasing the conversion and the oil + gas yield. The conversion of preasphaltenes hydro-conversion under 425 °C, for 40 min reached 81.3% with 51.2% oil + gas yield. SO42−/ZrO2 solid acid was in favor of the catalytic cracking rather than the catalytic hydrogenation in the hydro-conversion of preasphaltenes. The activation energy of preasphaltenes conversion into asphaltenes was 72 kJ/mol. The regressive reactions were only observed at a higher temperature.  相似文献   

20.
The effect of quaternary ammonium on discharge characteristic of Li/O2 cells was studied by using Super-P carbon as air cathode, a 0.2 mol kg−1 LiSO3CF3 1:3 (wt.) PC/DME solution as baseline electrolyte, and tetrabutylammonium triflate (NBu4SO3CF3) as an electrolyte additive or a co-salt. Results show that Li/O2 cells can run normally in an electrolyte with NBu4SO3CF3 as the sole conductive salt. However, such cells suffer lower voltage and capacity as compared with those using the lithium ionic baseline electrolyte. This is due to the larger molar volume of quaternary ammonium cation, which results in less deposition of oxygen reduction products on the surface of carbon. When used as an electrolyte additive or a co-salt, the ammonium is shown to increase capacity of Li/O2 cells. The plot of differential capacity versus cell voltage shows that the Li/O2 cell with ammonium added has broad and scatted differential capacity peaks between the voltages of two reactions of “2Li + O2 → Li2O2” and “2Li + Li2O2 → 2Li2O”. This phenomenon can be attributed to the phase transfer catalysis (PTC) property of quaternary ammonium on the second reaction. Due to inverse effects of the cation geometric volume and the PTC property of ammonium ions on the discharge capacity, there is an optimum range for the concentration of ammonium. It is shown that the addition of NBu4SO3CF3 increases discharge capacity of Li/O2 cell only when its concentration is in a range from 5 mol% to 50 mol% vs. the total of Li/ammonium mixed salt, and that the optimum concentration is about 5 mol%. In this work we show that the addition of 5 mol% NBu4SO3CF3 into the baseline electrolyte can increase discharge capacity of a Li/O2 cell from 732 mAh g−1 to 1068 mAh g−1 (in reference to the weight of Super-P carbon) when the cell is discharged at 0.2 mA cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号