首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29Si and 27Al NMR and BSE/EDX.The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time.The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass.  相似文献   

2.
The calcium silicate hydrates   总被引:5,自引:0,他引:5  
This article is concerned with the calcium silicate hydrates, including crystalline minerals and the extremely variable and poorly ordered phase (C-S-H) that is the main binding phase in most concrete. Up-to-date composition and crystal-structure information is tabulated for the most important crystalline calcium (alumino) silicate hydrates and related phases. A number of models for the nanostructure of C-S-H are summarized and compared and it is shown that there is much more of a consensus than might seem apparent at first sight. The value of the recently solved structures of 1.4 nm tobermorite and jennite, together with those of jaffeite and metajennite, for visualizing the nanostructural elements present in the models is demonstrated. The importance of Hal Taylor's contribution to the solution of the structure of jennite is highlighted. The applicability of Richardson and Groves' model is demonstrated using experimental composition-structure observations on the nature of C-S-H in a Portland cement-fly ash blend.  相似文献   

3.
The effect of sodium chloride on the chemical alteration of calcium silicate hydrate (C-S-H) was measured and discussed. The release of calcium from C-S-H was increased as the concentration of sodium chloride in the solution increased. It was observed that sodium sorbed onto the C-S-H phases and some sodium replaced calcium in C-S-H so that the release of calcium was enhanced. An integrated modelling approach employing an ion-exchange model and an incongruent dissolution model of C-S-H is developed. It reasonably and accurately predicted the release of calcium from C-S-H in sodium chloride solution by considering cation exchange and the effect of the ionic strength on the solubility of C-S-H.  相似文献   

4.
X-ray photoelectron spectroscopy (XPS) has been used to analyse a series of mechanochemically synthesised, nanocrystalline calcium silicate hydrates (C-S-H). The samples, with Ca/Si ratios of 0.2 to 1.5, showed structural features of C-S-H(I). XPS analysis revealed changes in the extent of silicate polymerisation. Si 2p, Ca 2p and O 1s spectra showed that, unlike for the crystalline calcium silicate hydrate phases studied previously, there was no evidence of silicate sheets (Q3) at low Ca/Si ratios. Si 2p and O 1s spectra indicated silicate depolymerisation, expressed by decreasing silicate chain length, with increasing C/S. In all spectra, peak narrowing was observed with increasing Ca/Si, indicating increased structural ordering. The rapid changes of the slope of FWHM of Si 2p, ΔCa-Si and ΔNBO-BO as function of C/S ratio indicated a possible miscibility gap in the C-S-H-solid solution series between C/S 5/6 and 1. The modified Auger parameter (α′) of nanocrystalline C-S-H decreased with increasing silicate polymerisation, a trend already observed studying crystalline C-S-H. Absolute values of α′ were shifted about − 0.7 eV with respect to crystalline phases of equal C/S ratio, due to reduced crystallinity.  相似文献   

5.
A thermodynamic incongruent dissolution/precipitation model of calcium silicate hydrate (C-S-H) is proposed, assuming a binary nonideal solid solution of Ca(OH)2 and SiO2. Using this model, both dissolution and precipitation of the C-S-H phase, with a continuous change in the Ca / Si ratio of the solid phase, can be predicted. The notable features of the model are its good continuity and simplicity so that calculation can be easily compiled in a calculation code. A series of experiments were carried out. C-S-H precipitates were prepared using two techniques: precipitation by contacting Ca(OH)2 solution with C-S-H gel and hydrolysis in a mixture of Ca and Si solutions. The equilibria in these experiments were predicted well by the proposed model. A calculation using the model also predicted well the dissolution of ordinary Portland cement hydrate with water exchange.  相似文献   

6.
The hydration of tricalcium silicate (C3S) was studied by secondary neutrals mass spectrometry (SNMS), a method that enables determination of the Ca/Si ratio of the formed calcium silicate hydrate (C-S-H) phase with an extremely low information depth. It was found that the magnitude of this parameter within the hydrate layer formed at the surface of the nonhydrated C3S is not constant and increases with increasing distance from the liquid-solid interface. It was also found that, at a constant distance from the surface, the Ca/Si ratio declines with hydration time. The kinetics of the hydration process is characterized by a very fast initial reaction, followed by a dormant period and a subsequent period of renewed hydration. The rate of hydration becomes distinctly accelerated by elevated temperature and retarded by the presence of sucrose, while NaCl affects the initial hydration kinetics only to a small degree.  相似文献   

7.
The structure and stoichiometry of C-S-H   总被引:1,自引:0,他引:1  
This review relates to the models describing the structural evolution of calcium silicate hydrate (C-S-H) at the crystal-chemical level as a function of composition in terms of calcium to silicon ratio. The different models are compared and discussed in the light of recent spectroscopic and microscopic data. Taking into account the structure and the morphological properties of C-S-H, a surface reaction thermodynamic model has been proposed and discussed to predict and correlate the chemical and structural evolution of C-S-H with solution chemistry.  相似文献   

8.
In this paper, calcium silicate hydrate doped with various amounts of Eu (Eu–CSH) via hydrothermal and coprecipitation methods have been systematically investigated. The hydrothermal method produced xonotlite while coprecipitation gave 11 Å tobermorite. Regardless of the synthesis method, incorporation of Eu inhibited the crystallite growth and particle size of the as-synthesized powders, while increasing their thermal stability. In both phases, Eu3+ was found to occupy the cation sites in preference to Ca2+. Comparing both synthesis methods, the hydrothermally synthesized powders were of higher crystallinity and thermal stability than the powders prepared by coprecipitation. Moreover, Eu–CSH powder by hydrothermal exhibited stronger photoluminescence intensity than the one by coprecipitation, primarily attributed to its higher degree of crystallinity. Thus, they showed higher potential for nanomedicine application where a combination of biocompatibility and light emission is desired.  相似文献   

9.
The following conclusions were obtained from the examinations of the acid resistance of calcium silicate hydrate.
(1)
The 1.1-nm tobermorite was formed from the batch mixture with a Ca/Si molar ratio of 0.6. Xonotlite was formed from the batch mixture with a Ca/Si molar ratio of 1.0.
(2)
For the sample prepared from a Ca/Si molar ratio of 1.0 in a batch mixture, β-wollastonite was formed by thermal treatment as the transition phase, and it was significantly dissolved in a hydrochloric acid solution.
(3)
For the sample prepared from a Ca/Si molar ratio of 0.6 in a batch mixture, β-wollastonite was formed by thermal treatment above 1000 °C, but the dissolved amount of this sample by acid treatment was small and left the original morphology. It was suggested that excess silica content was deposited on surface during the thermal transition from the 1.1-nm tobermorite to β-wollastonite. The deposited silica content significantly improved the acid resistance of β-wollastonite due to the surface coating with a silica layer.
  相似文献   

10.
New data relevant to calcium silicate hydrate (C-S-H) gels prepared at room temperature have been obtained over a time period of up to 112 weeks. X-ray diffraction (XRD) indicates equilibrium was attained after 64 weeks. Coupled with fourier transform infrared (FT-IR) spectroscopy, a phase change in C-S-H gel at Ca/Si ≈ 1.0 was identified and the occurrence of portlandite as a distinct phase for Ca/Si > 1.64. The incongruent dissolution of C-S-H gel was modeled as a non-ideal solid solution aqueous solution (SSAS) between the end-member components CaH2SiO4 (CSH) and Ca(OH)2 (CH) using equations defining the solidus and solutus curves on a Lippmann phase diagram. Despite being semi-empirical, the model provides a reasonable and consistent fit to the solubility data and can therefore be used to describe the incongruent dissolution of C-S-H gels with compositions Ca/Si ≥ 1.0.  相似文献   

11.
We have investigated the incorporation of zinc into both nanocrystalline and crystalline calcium silicate hydrates with starting C/S ratios of 2/3 (0.66). Zinc was added replacing calcium in the starting mixtures [Zn/(Zn+Ca)=0-1/4; 0-10 wt.% Zn], and the resultant phases were characterised using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), differential thermal analysis-thermogravimetry (DTA-TG) and environmental scanning electron microscopy (ESEM).In both groups of samples, increasing zinc content led to gradual structural changes, until eventually a second phase was formed. Zinc was incorporated to similar limits in both sets of samples. The thermal stability of the structures increased to a certain zinc content, beyond which there was structural destabilisation. Zinc incorporation is possible up to ∼6 wt.%. Our observations strongly indicate similar zinc incorporation mechanisms in both sample series, namely incorporation of zinc into the interlayer of C-S-H(I) and the X-sheet of gyrolite for nanocrystalline and crystalline samples, respectively.  相似文献   

12.
Thin coupons of white portland cement (WPC) and tricalcium silicate paste were decalcified by leaching in concentrated ammonium nitrate solutions, resulting in calcium-to-silicon molar ratios (C/S) ranging from 3.0 (control) down to 0.3. The microstructure and surface area were measured using both small-angle neutron scattering (SANS) and nitrogen gas sorption. The intensity in the SANS data regime corresponding to the volume fractal C-S-H gel phase increased significantly on leaching, and the total surface area per unit specimen volume measured by SANS doubled on leaching from C/S=3.0 to near C/S=1.0. The nitrogen BET surface area of the WPC pastes, expressed in the same units, increased on decalcification as well, although not as sharply. The primary cause of these changes is a transformation of the high-density “inner product” C-S-H gel, which normally has a low specific surface area as measured by SANS and nitrogen gas sorption, into a morphology with a high specific surface area. The volume fractal exponent corresponding to the C-S-H gel phase decreased with decalcification from 2.3 to 2.0, indicating that the equiaxed 5 nm C-S-H globule building blocks that form the volume fractal microstructure of normal, unleached cement paste are transformed by decalcification into sheetlike structures of increasing thickness.  相似文献   

13.
采用合成水化硅酸钙进行污水除磷试验,以模拟污水为研究对象,考察了接触时间、Ca2+浓度、初始pH值、干扰离子等因素对除磷效果的影响,在利用水化硅酸钙回收实际污水中磷的试验发现,在处理8h后除磷量达到101 mg/g,折合P2O5含量超过常用的水溶性磷肥过磷酸钙,且产物经酸处理后将快速释磷,在1h后磷释放率接近100%,...  相似文献   

14.
《Ceramics International》2016,42(3):4333-4346
Modifying the properties of modern concrete highlights the decoding the molecular structure of C–S–H gel, which is the main binding phase in the cementitious materials. In this paper, the structural, dynamical and mechanical properties were investigated by using C–S–H glassy model and its crystal analog tobermorite 11 Å to represent the disordered and ordered molecular structure. By using reactive force field molecular simulation, the structural discrepancy for ordered and disordered phase was illustrated in respect of silicate chain skeletons, local structure of the calcium oxygen octahedrons and hydroxyl distribution. In the glassy model, the local structure of C–S–H gel, with defective silicate chains and distorted calcium sheet, is similar to the silicate glass phase of metallic ions. Furthermore, to predict the mechanical properties of the C–S–H gel and tobermorite, uniaxial tension testing by the reactive force field coupled with both the mechanical response and chemical response during the large tensile deformation process. During the tensile process, water molecules, attacking the Si–O and Ca–O bond, are detrimental to the cohesive force development in the C–S–H gel.  相似文献   

15.
Decalcification shrinkage of cement paste   总被引:3,自引:0,他引:3  
Decalcification of cement paste in concrete is associated with several modes of chemical degradation including leaching, carbonation and sulfate attack. The primary aim of the current study was to investigate the effects of decalcification under saturated conditions on the dimensional stability of cement paste. Thin (0.8 mm) specimens of tricalcium silicate (C3S) paste, white portland cement (WPC) paste, and WPC paste blended with 30% silica fume (WPC/30% SF) were decalcified by leaching in concentrated solutions of ammonium nitrate, a method that efficiently removes calcium from the solid while largely preserving silicate and other ions. All pastes were found to shrink significantly and irreversibly as a result of decalcification, particularly when the Ca/Si ratio of the C-S-H gel was reduced below ∼ 1.2. Since this composition coincides with the onset of structural changes in C-S-H such as an increase in silicate polymerization and a local densification into sheet-like morphologies, it is proposed that the observed shrinkage, here called decalcification shrinkage, is due initially to these structural changes in C-S-H at Ca/Si ∼ 1.2 and eventually to the decomposition of C-S-H into silica gel. In agreement with this reasoning, the blended cement paste exhibited greater decalcification shrinkage than the pure cement pastes due to its lower initial Ca/Si ratio for C-S-H gel. The similarities in the mechanisms of decalcification shrinkage and carbonation shrinkage are also discussed.  相似文献   

16.
Studies were undertaken to produce reactive pozzolana i.e. metakaolin from four kaolinitic clays collected from different sources in India. The metakaolin produced from these clays at 700-800 °C show lime reactivity in between 10.5 to 11.5 N/mm2 which is equivalent to commercially available calcined clay Metacem-85. The microstructure of the metakaolin has been reported. The effect of addition of metakaolin up to 25% in the Portland cement mortars was investigated. An increase in compressive strength and decrease of porosity and pore diameter of cement mortars containing metakaolin (10%) was noted over the cement mortars without metakaolin. The hydration of metakaolin blended cement mortars was investigated by differential thermal analysis (DTA) and scanning electron microscopy (SEM). The major hydraulic products like C-S-H and C4AH13 have been identified. Durability of the cement mortars with and without metakaolin was examined in different sulphate solutions. Data show better strength achievement in cement mortars containing 10% MK than the OPC mortars alone.  相似文献   

17.
Cement paste undergoes a volumetric contraction called drying shrinkage when placed in a low relative humidity (RH) environment. Only a portion of this shrinkage is reversible upon rewetting. In order to understand better the mechanisms responsible for the irreversible portion of drying shrinkage, a quantitative comparison was made between shrinkage values and microstructural properties of cement pastes. Drying shrinkage, surface area and pore volume were manipulated using curing temperature and chemical admixtures. It was observed that total and irreversible drying shrinkage increase with surface area and pore volume as measured by nitrogen (1-40 nm pore radius range), when degree of hydration and water-to-cement ratio (w/c) are held constant (0.55 and 0.45, respectively).  相似文献   

18.
High alkaline desilication solution (DSS), a high volume byproduct from the pretreatment of high-alumina fly ash, was used as low-cost mother liquor for the synthesis of calcium silicate hydrate (C-S-H). Through the combined analysis of X-ray diffraction, thermogravimetric analysis, X-ray fluorescence, 29Si MAS NMR, and Brunauer-Emmett-Teller, the relationship between chemical composition and structure of C-S-H synthesized under Ca/Si of 0.83:1 to 2.0:1 was investigated. Silicon conversion and yield of product have a positive correlation with Ca/Si. Sodium uptake in C-S-H is inhibited as Ca/Si increases. The formation of sodium in C-S-H transfers from “bound Na” to “mobile Na” and aluminum from tetrahedrally coordinated Al (IV) to octahedrally coordinated Al (VI). The increase of Ca/Si leads to shortening of silicate chain and formation of more dimers, which causes more water bound in C-S-H. The mechanism of calcium addition on silicate chain obtained from DFT calculation primarily results from more interlayer calcium occurrence to affect bridging tetrahedron and cationic bounding states reorganization. Reasonable control for Ca/Si momentously contributes to the adjustment for composition and structure of C-S-H synthesized in DSS.  相似文献   

19.
Despite enormous interest in calcium silicate hydrate (C–S–H), its detailed atomic structure and intrinsic deformation under an external load are lacking. This study demonstrates the nanostructural deformation process of C–S–H in tricalcium silicate (C3S) paste as a function of applied stress by interpreting atomic pair distribution function (PDF) based on in situ X‐ray scattering. Three different strains in C3S paste under compression were compared using a strain gauge, Bragg peak shift, and the real space PDF. PDF refinement revealed that the C–S–H phase mostly contributed to PDF from 0 to 20 Å whereas crystalline phases dominated that beyond 20 Å. The short‐range atomic strains exhibited two regions for C–S–H: I) plastic deformation (0‐10 MPa) and II) linear elastic deformation (>10 MPa), whereas the long‐range deformation beyond 20 Å was similar to that of Ca(OH)2. Below 10 MPa, the short‐range strain was caused by the densification of C–S–H induced by the removal of interlayer or gel‐pore water. The strain is likely to be recovered when the removed water returns to C–S–H.  相似文献   

20.
Calcium silicate hydrate (C–S–H) is the main hydration product of cement and the most important binder that plays a pivotal role in the mechanical properties of concrete. However, one of the major drawbacks of C–S–H is its high brittleness and low flexural strength due to its disordered structure at the nano- and micro-scales. Therefore, this study adopts graphene oxide (GO) to modify the structure of C–S–H, and investigates the effects of synthetic methods on the structure of C–S–H–GO composites. In this study, the highly ordered C–S–H–GO composite is successfully synthesized and exhibits itself the high toughness. Moreover, the formation mechanism of the highly ordered C–S–H–GO composite is explored and discussed, which provides a new insight into the design of high-toughness cement-based materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号