首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the migration law of ion release and adsorption in the flotation pulp of oxide zinc ore, and found that numerous different ions existed in the pulp. The total concentrations and major sources of various ions (Pb2+, Zn2+, Fe3+, Ca2+, Mg2+, SO42-, etc.), released from the minerals after grinding, were determined. The zeta potential tests indicated that a mixed-ion solution strongly influences the surface charge of the minerals. The flotation tests show that the migration law of ions is detrimental to the separation and concentration of minerals.  相似文献   

2.
Preparation and characterization of acid-activated bentonite powders   总被引:1,自引:0,他引:1  
The Kütahya calcium bentonite (CaB) from Turkey shows significant changes in crystal structure, chemical composition and porosity with H2SO4 activation realized by heating its acidic aqueous suspension at 97 °C for 6 h. The acid content was changed from zero to 70% by mass, based on the dry bentonite-acid mixture. It was estimated from chemical analysis (CA) and X-ray diffraction (XRD) data that the CaB contains 65% calcium montmorillonite (CaM) and 30% opal-CT (OCT) by mass, and also illite (I) and other impurities in lower extents. The decrease in crystallinity of the CaM by the activation was discussed as regards to the decrease in the relative intensity (I / I0) and increase in the full width at half-maximum peak height (FWHM) of the 001 XRD peak for CaM with the H2SO4%. The CA data reveals that the relative content of the undissolved cations in the CaB increase in the order of Ca2+, Na+, Mg2+, Fe2+,3+, Al3+, K+, Si4+, and Ti4+ with H2SO4%. The specific micropore volume (Vmi) and specific mesopore volume (Vme) of the samples were estimated from N2-adsorption and desorption data, by standard methods. The Vme shows a ‘zig-zag’ increase from 0.104 cm3g− 1 to a maximum of 0.232 cm3g− 1 at 40% and then decrease to 0.149 cm3g− 1 at 70% H2SO4, respectively. The Vmi increases about from zero to 0.055 cm3g− 1 at 10% H2SO4 and then stayed approximately constant.  相似文献   

3.
The influences of eight metal ions (i.e., Na+, Ca2+, Ag+, Co2+, Cu2+, Al3+, Zn2+, and Mn4+) on mycelia growth and palmarumycins C12 and C13 production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 were investigated. Three metal ions, Ca2+, Cu2+ and Al3+ were exhibited as the most effective to enhance mycelia growth and palmarumycin production. When calcium ion (Ca2+) was applied to the medium at 10.0 mmol/L on day 3, copper ion (Cu2+) to the medium at 1.0 mmol/L on day 3, aluminum ion (Al3+) to the medium at 2.0 mmol/L on day 6, the maximal yields of palmarumycins C12 plus C13 were obtained as 137.57 mg/L, 146.28 mg/L and 156.77 mg/L, which were 3.94-fold, 4.19-fold and 4.49-fold in comparison with that (34.91 mg/L) of the control, respectively. Al3+ favored palmarumycin C12 production when its concentration was higher than 4 mmol/L. Ca2+ had an improving effect on mycelia growth of Berkleasmium sp. Dzf12. The combination effects of Ca2+, Cu2+ and Al3+ on palmarumycin C13 production were further studied by employing a statistical method based on the central composite design (CCD) and response surface methodology (RSM). By solving the quadratic regression equation between palmarumycin C13 and three metal ions, the optimal concentrations of Ca2+, Cu2+ and Al3+ in medium for palmarumycin C13 production were determined as 7.58, 1.36 and 2.05 mmol/L, respectively. Under the optimum conditions, the predicted maximum palmarumycin C13 yield reached 208.49 mg/L. By optimizing the combination of Ca2+, Cu2+ and Al3+ in medium, palmarumycin C13 yield was increased to 203.85 mg/L, which was 6.00-fold in comparison with that (33.98 mg/L) in the original basal medium. The results indicate that appropriate metal ions (i.e., Ca2+, Cu2+ and Al3+) could enhance palmarumycin production. Application of the metal ions should be an effective strategy for palmarumycin production in liquid culture of the endophytic fungus Berkleasmium sp. Dzf12.  相似文献   

4.
硫铝酸盐与硅酸盐矿物合成高性能水泥   总被引:16,自引:1,他引:15  
主要阐述以硅酸盐矿物阿利特(C3S)或贝利特(C2S)与硫铝酸盐矿物硫铝酸钙(C4A3S↑-)或硫铝酸钡钙[C(B)1A3S↑-]为主导矿物的复合型水泥的组成设计、低温合成技术及其性能与应用,同时还阐述了具有突出快硬旱强特点的硫铝酸钡钙矿物的性能以及由该矿物复合成的新型水泥的研究进展,对以阿利特-硫铝酸钡钙为主导矿物的新型高胶凝性水泥的发展前景进行了展望。  相似文献   

5.
Rhabdophane-type Eu3+,Tb3+-codoped LaPO4·nH2O single-crystal nanorods with the compositions La0.99999-xEuxTb0.00001PO4·nH2O (x?=?0–0.03), La0.99999-yTbyEu0.00001PO4·n′H2O (y?=?0–0.010), and La0.99999-zTbzEu0.000007PO4·n′′H2O (z?=?0–0.012) were hydrothermally synthesized with microwaves. It is shown that the Eu3+,Tb3+ codoping does not affect the thermal stability of these nanorods, which is due to the formation of substitutional solid solutions with both Eu3+ and Tb3+ replacing La3+ in the crystal lattice. Moreover, it is also shown that monazite-type Eu3+,Tb3+-codoped LaPO4 single-crystal nanorods can be obtained by calcining their rhabdophane-type Eu3+,Tb3+-codoped LaPO4·(n,n′ or n′′)H2O counterparts at moderate temperature in air, and that they are thermally stable. It is also observed that, for the same Eu3+,Tb3+-codoping content, the monazite-type Eu3+,Tb3+-codoped LaPO4 nanorods exhibit higher photoluminescent efficiency than the rhabdophane-type Eu3+,Tb3+-codoped LaPO4· (n,n′ or n′′)H2O nanorods. Moreover, it is found that the highest photoluminescence emission corresponds to the monazite-type La0.96999Eu0.02Tb0.00001PO4 nanorods for the La0.99999-xEuxTb0.00001PO4 system. However, for those compositions energy transfer from Tb3+ to Eu3+ does not occur. In addition, for an efficient energy transfer to occur, a content of at least 1?mol% Tb3+ is needed in all the studied materials.  相似文献   

6.
High calcium sulpho-aluminate (3CaO. Al2O3. 3CaSO4. 31H2O—C.S.A.) is a deterioration product of Portland cement found in concrete. It is formed by the attack of sulphate solutions on two of the Portland cement components: hydrated calcium Aluminate and lime. These phenomena fostered a study of the synthesis and stability of calcium sulpho-aluminate. Results of the experiments on stability of calcium sulphoaluminate in different media are discussed. Measures for preventing the formation of C.S.A. in Portland cement are described.  相似文献   

7.
A red long-lasting phosphorescent material, monodisperse Y2O2S: Eu3+, Mg2+, Ti4+ nanospheres have been prepared successfully. Y(OH)(CO3): Eu3+ nanospheres were firstly synthesized via an urea-based homogeneous precipitation technique to serve as the precursor. Nanospheres long-lasting phosphors Y2O2S: Eu3+, Mg2+, Ti4+ were obtained by calcinating the precursor in CS2 atmosphere. XRD investigation shows a pure phase of Y2O2S, indicating no other impurity phase appeared. SEM observation reveals that the structures are nanosphere. The Y2O2S: Eu3+, Mg2+, Ti4+ nanospheres with particle size about 100–150 nm show uniform size and well-dispersed distribution. After irradiation by ultraviolet radiation with 325 nm for 5 min, the phosphor emitted red color long-lasting phosphorescence corresponding to typical emission of Eu3+ ion. The main emission peaks are ascribed to Eu3+ ions transition from 5DJ (J = 0, 1, 2) to 7FJ (J = 0, 1, 2, 3, 4). Both the PL spectra and luminance decay revealed that this phosphor had efficient luminescent and long-lasting properties. It was considered that the red-emitting long-lasting phosphorescence was due to the persistent energy transfer from the traps to the Ti4+ and Mg2+ ions.  相似文献   

8.
Reaction of 2,6-bis(pyrrolidin-2-yl)pyridine (LH4) with RuCl3·3H2O in refluxing methanol/water mixtures gives rise to the formation of the octahedral complexes [Ru(LH4)(L)]2+, in which one of the two trihapto ligands has been dehydrogenated as 2,6-bis(3,4-dihydro-2H-pyrrol-5-yl)pyridine (L), even if LH4 was present in excess. With the three stereoisomers of LH4, the complexes [Ru(R,S-LH4)(L)]2+ (meso), [Ru(R,R-LH4)(L)]2+ and [Ru(S,S-LH4)(L)]2+ have been isolated as the perchlorate salts and characterised by X-ray structure analysis and by CD spectra.  相似文献   

9.
Dissolution of a cold isostatically pressed high purity alumina ceramics in aqueous HCl solutions was studied as a function of immersion time and acid concentration. From the amounts of Al3+, Mg2+, Ca2+, Na+, Si4+ and Fe3+ ions released in the corrosive solution, a degree of dissolution χi for each component was calculated according to the equation χi = A/B, where A and B are respectively the amount of the element released in the corrosive solution and the amount of the element in the untreated material. The determination of the amounts of ions released in the corrosive solutions was carried out by means of atomic absorption spectrometry (AAS). The corrosion of alumina ceramics in the HCl aqueous solution is determined by the solubility of alumina and the solubility of grain-boundary impurities. Very low dissolution values of Al3+, Mg2+, Ca2+, Na+, Si4+ and Fe3+ ions after the corrosion test of alumina ceramics showed a very good corrosion resistance in the HCl aqueous solution.  相似文献   

10.
Calcium chloraluminate (3CaO · Al2O3 · CaCl2 · 10H2O) is a deterioration product of Portland cement found in concrete. It is formed by the attack of chloride solutions on two of the Portland cement components: hydrated calcium aluminate and lime. A study of the synthesis and stability of calcium chloraluminate in different media are described. Calcium chloraluminate enhances the growth of high calcium sulphoaluminate crystals (3CaO · Al2O3 · 3CaSO4 · 31H2O).  相似文献   

11.
The substance concentration of ionized calcium (c Ca2+) in blood, plasma or serum preanalytically may be affected by pH changes of the sample, calcium binding by heparin, and dilution by the anticoagulant solution.pH changes in whole blood can be minimized by anaerobic sampling to avoid loss of Co2, by measuring as soon as possible, or by storing the sample in iced water to avoid lactic acid formation. cCa 2+ and pH should be determined simultaneously.Plasma or serum: If centrifuged in a closed tube, and measured immediately, the pH of the sample will be close to the original value. If a delay has occurred between centrifugation and the measurement, causing substantial loss of Co2, equilibration of the sample with a gas mixture corresponding to pCO2= 5.3 kPa prior to the measurement is recommended. Conversion of the measured values to cCa 2+ (7.4) is only valid if the pH is in the range 7.2-7.6.Ca2+ binding by heparin can be minimized by using either of the following:(1) A final concentration of sodium or lithium heparinate of 15 IU/ml blood or less(2) Calcium titrated heparin with a final concentration of less than 50 IU/ml blood.Dilution effect can be avoided by use of dry heparin in capillaries or syringes. When heparin solutions are used, errors due to dilution or calcium binding can be reduced by using syringes with a heparin solution containing free calcium ions corresponding to the mean concentration of ionized calcium in normal plasma.Conditions for blood collection, storage, and transport to avoid preanalytical errors are described in this paper.  相似文献   

12.
《Ceramics International》2016,42(15):16626-16632
A series of Ce3+ doped and Ce3+/Mn2+ co-doped calcium zirconium silicate CaZrSi2O7 (CZS) phosphors have been synthesized via conventional high temperature solid state reactions. The luminescence properties, energy transfer between Ce3+ and Mn2+ have been investigated systematically. Under 320 nm excitation, the phosphor CZS: 0.05Ce3+ exhibit strong blue emission ranging from 330 nm to 500 nm, attributed to the spin-allowed 5d-4f transitions of Ce3+ ions. There are two different emission centers of Ce3+ ions, Ce3+(I) and Ce3+(II). The emission spectra of Ce3+, Mn2+ co-doped phosphors shows a broad emission around 550 nm corresponding to the 4T1(4G)-6A1(6S) spin-forbidden transition of Mn2+. The energy transfer between Ce3+ and Mn2+ is detected and the transfer efficiency of Ce3+(II) to Mn2+ is faster than that of Ce3+(I) to Mn2+. The resonant type is identified via dipole-dipole mechanism. Additionally, a blue-shift emission of Ce3+ and a red-shift emission of Mn2+ have been observed following the increase of Mn2+ content in relation to the energy transfer. Thermal quenching has been investigated and the emission spectra show a blue-shift with the temperature increases, which have been discussed in details. CZS: 0.05Ce3+, yMn2+ phosphors can be tuned from blue to white and even to yellow by adjusting the Mn2+ content. All the results indicate that CZS: Ce3+, Mn2+ phosphor have a potential application for near-UV LEDs.  相似文献   

13.
The synthetic rutile and metal-doped LiFePO4 are prepared from the high-titanium residue and iron-rich lixivium, which are obtained from the ilmenite by a mechanical activation and leaching process. ICP results show that the rutile contains 92.01% TiO2, 1.59% Fe2O3, 0.034% MnO2 and 0.60% (MgO + CaO), which meet the requirement of the titanium dioxide chlorination process. The results also reveal that small amounts of Al3+, Ca2+ and Ti4+ precipitate in the FePO4·xH2O precursor. XRD and Rietveld-refine results show that the metal-doped LiFePO4 is single olivine-type phase and well crystallized, and Ti4+ occupy M1 site, Ca2+ occupy M2 site and Al3+ occupy both sites, which indicates the formation of cation-deficient solid solution. The sample exhibits a capacity of 123 mAh g1 at 5C rate, and retains 94.3% of the capacity after 100 cycles.  相似文献   

14.
Nanofiltration (NF), which has been largely developed over the past decade, is a promising technology for the treatment of organic and inorganic pollutants in surface and ground waters. The ESNA 1 membrane from the Nitto Denko Corporation of Japan is made of aromatic polyamide, which provides salt rejection from 50% to 90%. In this paper permeation experiments of aqueous solutions of five chlorides (NH4Cl, NaCl, KCl, MgCl2 and CaCl2), three nitrates (NaNO3, Mg(NO3)2 and Ca(NO3)2), and three sulfates (NH4)2SO4, Na2SO4 and MgSO4) were carried out. The effects of species and concentration of salts on the separation performance of the ESNA 1 membrane were investigated. The experimental results showed that the rejection to most salts by the ESNA 1 membrane decreased with the growth of the concentration. Then, the reflection coefficient and solute permeability of ESNA 1 membrane were calculated by the Spiegler-Kedem equation from experimental data. The reflection coefficients of the ESNA 1 membrane to salts are all above 0.95. The salt permeabilities, except for magnesium and calcium salts, increased with the growth of concentration. The sequence of rejection to anions by the ESNA 1 membrane is R(SO2−4) > R(Cl) > R(NO3) at the same concentration which ranges from 10 mol/m3 to 100 mol/m3. The sequence of rejection to anions by the ESNA 1 membrane can be written as follows: R(Na+) > R(K+) > R(Mg2+) > R(Ca2+) at 10 mol/m3 concentration and R(Mg2+) > R(Ca2+) > R(Na+) > R(K+) at 100 mol/m3 concentration.  相似文献   

15.
A series of Ca5-x(PO4)2SiO4:xEu3+ red-emitting phosphors were synthesized through solid-state reaction, and alkali metal ions A+ (A = Li, Na and K) were co-doped in Ca5(PO4)2SiO4:Eu3+ to improve its luminescence property. The impacts of synthesis temperature, luminescence center Eu3+ concentration and charge compensator A+ on the structure and luminescence property of samples were studied in detail. X-ray diffraction results indicated that prepared Ca5(PO4)2SiO4:Eu3+, A+ had a standard Ca5(PO4)2SiO4 structure with space group P63/m. Under the excitation of 392 nm, Ca5(PO4)2SiO4:Eu3+ phosphors showed a red emission consisting of several emission peaks at 593 nm, 616 nm and 656 nm, relevant to 5D07F1, 5D07F2 and 5D07F4 electron transitions of Eu3+ ions, respectively. Luminescence intensity and lifetime of Ca5(PO4)2SiO4:Eu3+ can be significantly enhanced through co-doping alkali metal ion A+, which play an important role as charge compensator. The results suggest that Ca5(PO4)2SiO4:Eu3+, A+ red phosphors with excellent luminescence property are expectantly served as red component for white light-emitting diodes excited by near-ultraviolet.  相似文献   

16.
X-modified magnetite (XFe2O4; X?=?Cr, Mn, Fe, Co or Ni) was synthesized from goethite reduction, and inserted into the Fe-vacancy of perovskite (BiFeO3), via microbial Fe3+→Fe2+ reduction by Shewanella (e.g. Shewanella oneidensis MR-1 and Shewanella putrefaciens CN32). We demonstrated that the average adsorption intensities of nine toxic trace metals (Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Hg2+), in Freundlich mode were 8.29–10.79 multiples higher than that in Langmuir mode, being more competitive than previously reported values. The fluorescence quenching is attributed to the orbital hybridization of molecular oxygen activation and trace metal (M) ions, which weakens the X2+-O-Fe3+-O-(Fe3+) coupling orbital. In addition Shewanella putrefaciens CN32 creates more oxygen vacancies to modify Ni↓-Fe↓-O↑ d*-p hybridized orbitals for enhancing the local spin-orbit coupling with Cd-4d10. This design idea can be extended to other direct biosynthetic magnetite-perovskite as highly efficient toxic trace metal removal agents.  相似文献   

17.
Structure-property relationship of co-substituted (Mg2+1/4Mo6+3/4)5+, (Al3+1/3Mo6+2/3)5+, (Si4+1/2Mo6+1/2)5+, (Zr4+1/2Mo6+1/2)5+ for Nb5+ in NdNbO4 ceramics was investigated systematically. The remarkable differences in dielectric properties of each composition originated from their bond characteristics and structure stability. The elongated/compressed bonds have an effect on the cell volume and polarization. And the average bond covalency of Nb-O bond was responsible for the development of permittivity. Q×f values and the total lattice energy went up to maximum when (Si0.5Mo0.5) occupied Nb-site. Variations of lattice energy together with Nb-O bond energy suggest that a more stable structure was obtained through co-substitution. The optimal microwave dielectric properties is: εr =?18.97, Q×f?=?49466?GHz, τf =?7.34?ppm/°C for NdNb0.97(Si0.5Mo0.5)0.03O4, sintered at 1250?°C.  相似文献   

18.
《Catalysis communications》2007,8(11):1735-1738
Newly synthesized calcium aluminosilicate, in which oxide anions were occluded, was tested as a catalyst for partial oxidation of CH4 into CO and H2. Substitution of a part of Ca2+ with Ni2+ resulted in a marked increase in CH4 conversion (93% at 800 °C) and in CO and H2 selectivities (94% and 95%, respectively), while Cr3+, Co3+, Fe3+ and Cu2+ slightly increased CH4 conversion with a considerable decrease in CO and H2 selectivities. Such a high performance may be attributed to the ability of Ni-substituted sample for CH4 steam reforming appearing during CH4 partial oxidation.  相似文献   

19.
《Ceramics International》2023,49(5):7913-7919
Developing novel optical thermometry with ultrahigh relative sensitivity and temperature resolution has become a cutting-edge topic. For this purpose, under obeying Boltzmann distribution, a series of Li2Zn0.9992-xAxGe3-yByO8:0.08% Cr3+ (B= Sc3+, In3+, A = Si4+) phosphors were studied, which the luminescence intensity ratio between the transition of 4T2g4A2g emission and the R line based on thermally coupled energy levels constitutes a temperature sensing work with a relative sensitivity of 9.46% K?1, 9.73% K?1, and 10.38% K?1, respectively. It is worth mentioning that the luminescence intensity of the R line (peak 1) increases significantly with the increase of temperature, while the transition of 4T2g4A2g (peak 2) with high intensity at low temperature gradually quenching, and this opposite trend is an important advantage for the design of excellent thermometers. Compared the best relative sensitivity of Li2Zn0.9992-xAxGe3-yByO8:0.08%Cr3+ (B= Sc3+, In3+, A = Si4+) with the crystal field Dq/B, it can be concluded that relative sensitivity increasing gradually with decreasing the intensity of crystal field. Finally, by testing the stability of the sample at 50 K, a thermal resolution of 0.082 K, 0.080 K and 0.077 K was obtained, respectively, which is one of the best thermal resolutions so far, while the repeatability of the sample stability at 50 K and 300 K cycles was higher than 99%. Our work is expected to provide guiding insights for optimizing the sensitivity of Cr3+-based luminescence intensity ratio thermometers.  相似文献   

20.
Advanced fuel characterization helps to predict ash fouling and slagging. Chemical fractionation analysis, i.e. sequential leaching in H2O, NH4Ac(aq), and HCl(aq), was applied to the biomass of spruce, pine, birch, and aspen. All of the Cl in the samples and most of the K, Na, and P were water-soluble; most of the Mg and Mn, and some of the Ca were leached in NH4Ac; most of the Ca was leached in HCl; and most of the Si and S remained insoluble in the biomass. Ion Chromatography found the water-soluble Cl, P, and S present as Cl, , and , respectively, and equimolar concentrations of as leached Ca in the acid fraction. The biomass solids were determined for anionic groups by methylene blue sorption. The contents were lowest in the wood samples (22-118 mmol/kgD.S.) and highest in the bark samples (130-453 mmol/kgD.S.). The closing of the ion charge balance led to a quantitative model for the ash-forming matter: water-soluble salts (KCl, K2HPO4, and K2SO4), acid-soluble minerals (CaC2O4), non-soluble minerals (SiO2), and organically associated ash-forming elements (ionically bonded Ca2+, Mg2+, Mn2+, and K+, and covalently bonded P and S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号