首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short multi-wall carbon nanotubes (MWNTs) with open tips were obtained by mechanical ball milling. The microstructure characteristics of MWNTs before and after ball milling were checked by transmission electron microscopy (TEM). The effect of ball milling on the hydrogen adsorption behavior of the MWNTs was studied. The hydrogen adsorption experiments were carried out at room temperature under a pressure of 8-9 MPa. The hydrogen adsorption capacity of carbon nanotubes milled for 10 h was 0.66 wt%, which was about six times that of MWNTs without milling. For the carbon nanotubes milled with MgO for 1 h, a hydrogen adsorption capacity of 0.69 wt% was obtained. The enhancement of hydrogen adsorption might result from the increase of defects and surface area of the MWNTs caused by ball milling.  相似文献   

2.
Functionalization of single-walled carbon nanotubes by using alkyl-halides   总被引:1,自引:0,他引:1  
In this paper we demonstrate the functionalization of single-walled carbon nanotubes prepared by chemical vapor deposition. The chosen functionalization agents were alkyl-halides such as trifluoromethane (TFM) and trichloromethane (TCM); or double bond containing alkyl-halides as tetrachloroethylene (TCE) and hexafluoropropene (HFP) that can easily form radicals. Functionalization of samples was carried out under mild conditions, by ball milling of nanotubes in an atmosphere of functionalization agent, at room temperature. For the sake of comparison, chlorination was also performed by chlorine gas. In this process the cleavage of nanotube C-C bonds results in active sites, which can activate molecules in gas phase or adsorbed on the surface of carbon nanotubes. Halogenated samples were characterized by means of particle induced γ-ray emission, transmission electron microscopy, thermogravimetry, and X-ray photoelectron spectroscopy. We concluded that this method gives functionalized single-walled carbon nanotubes in the range of 0.3-3.5 wt.% of fluorine and 5.5-17.5 wt.% of chlorine.  相似文献   

3.
低速球磨对多壁碳纳米管球磨特性的影响研究   总被引:4,自引:0,他引:4  
万淼  黄新堂 《炭素技术》2005,24(3):20-23
利用低速球磨机对催化化学气相沉积法制备的多壁碳纳米管进行了球磨。透射电子显微镜实验结果表明。低速球磨机球磨可以使多壁碳纳米管开口和变短,球磨5h后碳纳米管开口和变短效果已经很明显;球磨20h后,发现碳纳米管变短到出现明显的团聚现象。X射线衍射实验结果表明,球磨20h后仍为多壁碳纳米管,每一层碳管仍为规则的石墨化结构。  相似文献   

4.
Bamboo-like carbon nanotubes were prepared by decomposing C_2H_2 on ferric catalyst. Acid immersion, ball milling and KOH etching were performed before hydrogen adsorption measurement. TEM, HREM, SEM and IR analyses were used to characterize the microstructure. The maximum hydrogen adsorption capacity of the raw sample reached 1.53% (mass) at 300 K under 7 MPa. The unusual structure of carbon nanotubes plays a dominant role for hydrogen adsorption. But some treatments will destroy the structure and decrease hydrogen uptake capacity.  相似文献   

5.
多壁碳纳米管的球磨处理对其吸附储氢性能的影响   总被引:4,自引:3,他引:1  
研究了球磨改性对多壁碳纳米管储氢性能的影响,球磨处理前后的碳纳米管微观结构采用TEM和XRD进行表征. 结果发现,球磨处理能使碳纳米管长度变短,管端口打开,缺陷增多,表面积增大,球磨处理12 h的碳纳米管的吸附量从未球磨的1.60%(w)提高到2.55%(w),表明球磨改性能明显提高碳纳米管的吸附量.  相似文献   

6.
针对热解炭颗粒大、表面活性弱、吸附能力差的问题,本文提出了一种机械球磨表面改性方法,探讨了不同球磨改性参数下热解炭对磺胺甲唑(SMZ)的吸附效果。以废橡胶连续热解炭为原料,采用不锈钢球磨制得具有不同表面性质的球磨炭,分析了球磨前后热解炭的结构、表面性质及表面形貌,并对比了球磨改性前后的SMZ吸附性能。结果表明,球磨改性过程可以有效改善废轮胎热解炭结构及表面性质,球磨处理2h的热解炭对SMZ的吸附效果最好,吸附量达到59.37mg/g,吸附动力学符合伪二级吸附模型。  相似文献   

7.
In recent years, carbon nanotubes (CNTs) reinforced aluminum matrix composites (AMCs) have attracted increasing attention. The quality of dispersion, however, is a crucial factor which determines the homogeneity and final mechanical properties of these composites. This work studied the mechanical mixing methods, viz. high energy and low energy ball millings, and compared them to a novel polyester binder-assisted (PBA) mixing method. Experimental results showed that the high energy and low energy ball-milled CNTs disintegrated and there were residual stresses, unlike the PBA-CNTs. The CNT dispersion conditions by these three methods were discussed. The Al-CNTs mixture was subsequently consolidated by powder metallurgy (PM) technique. Small addition of CNTs (0.5 wt.%) evidently improved the tensile strength and hardness of the composite by comparing with the pure matrix. Mechanical property enhancements of the Al-0.5CNT composites from PBA and high energy ball milling were superior to that mixed by low energy ball milling. This showed good dispersion effect in PBA and high energy ball milling technique.  相似文献   

8.
9.
采用湿法球磨与粒子烧结相结合的方法,以α-Al2O3为主要原料,干压成型法制备出性能较高的炭分子筛膜支撑体.经过各种表征手段分析,所得支撑体具有均布的孔隙结构和较窄的孔径分布,并探讨了致孔剂种类、干燥制度、烧结温度及球磨时间对炭分子筛膜支撑体性能的影响.结果表明,1 250℃下烧结然后保温2h、球磨时间为4h时,制备的高渗透通量炭分子筛膜支撑体平均孔径为0.4μm、孔隙率为46%.  相似文献   

10.
The work focuses on the hydrogenation of carbon monoxide over solid catalysts undergoing mechanical activation by ball milling. The rate of carbon monoxide conversion at individual ball impacts was estimated by measuring the impact frequency, the mass of powders involved in individual impacts and their duration. The rate of the mechanochemical hydrogenation process was compared with the one of the corresponding thermal process. An enhancement of the catalyst activity under mechanical activation conditions is observed.  相似文献   

11.
Carbon nanotubes (CNTs) were shortened from 5 to 15 μm to ca. 200 nm using ball milling with ethanol as the milling aid agent, and a platinum catalyst with these shortened carbon nanotubes (SCNTs) as the support was prepared by a high‐pressure colloidal method. It was found that this catalyst with SCNTs showed much higher activity than a platinum catalyst with normal CNTs as support; for methanol anodic oxidation, the activity of the Pt/SCNTs was 50% higher than that of the Pt/CNTs, and the Pt/SCNTs also showed higher activity for the cathodic reduction of oxygen. The Pt/SCNTs were characterised by X‐ray diffraction scanning and transmission electron microscropy. It is suggested that the significant performance enhancement when SCNTs are used as support might result from the generation of new surfaces and defects, the opening of closed nanotubes in the process of milling, higher platinum dispersion on the shortened nanotubes and the interaction of platinum nanoparticles with the SCNTs.  相似文献   

12.
碳纳米管在氟碳树脂中的分散及其对光学性能的影响   总被引:1,自引:0,他引:1  
采用球磨分散工艺制备了碳纳米管乙酸丁酯分散液,研究了分散剂的用量及分散时间对碳纳米管分散效果的影响.向上述分散液巾加入氟碳树脂制备成涂料,用扫描电子显微镜观察了碳纳米管在氟碳树脂中的分散状态,考察了分散状态对涂层热性能及光学性能的影响.  相似文献   

13.
Limeng Chen 《Polymer》2010,51(11):2368-23
Polymer nanocomposite foams, products from the foaming of polymer nanocomposites, have received increasing attention in both the scientific and industrial communities. Nanocomposite foams filled with carbon nanofibers or carbon nanotubes with high electrical conductivity, enhanced mechanical properties, and low density are potential effective electromagnetic interference (EMI) shielding materials. The EMI shielding efficiency depends on the electrical conductivity and bubble density, which in turn, depend on the properties of the filler. In the current study, multi walled carbon nanotubes (MWNT) with controlled aspect ratio were used to alter the bubble density in MWNT/poly(methyl methacrylate) (PMMA) nanocomposites. It was found that the nanocomposite foams filled with shorter MWNT had higher bubble density under the same foaming conditions and MWNT concentration. Both the ends and sidewalls of carbon nanotubes can act as heterogeneous bubble nucleation sites, but the ends are more effective compared to the sidewalls. Shorter nanotubes provide more ends at constant MWNT concentration compared to long nanotubes. As a result, the difference in the foam morphology, particularly the bubble density, is due to the difference in the number of effective bubble nucleation sites.  相似文献   

14.
Ultra high molecular weight polyethylene (UHMWPE) composites reinforced with multiwalled carbon nanotubes (MWCNT) were produced using planetary ball milling. The aim was to develop a more wear resistant composite with improved mechanical properties to be used in stress bearing joints. The effect of manufacturing parameters such as the effect of ball milling time and rotational speed on the final composite was analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), particle size distribution, and contact angle measurements. Ball milling as a mixing technique for UHMWPE based composites is not a new approach but yet, the effect of time, rotational speed, loading of milling jar, and type of ball mill has not been reported properly for UHMWPE. Composites with 0.5 and 1.0 wt% UHMWPE/MWCNTs were manufactured with different rotational speed and mixing times. The results indicate that rotational speed rather than mixing time is important for dispersing MWCNTs using planetary ball milling. Tensile test showed a slight decrease for the MWCNT concentration of 1 wt% suggesting that this amount is the threshold for a satisfactory distribution of the fillers in the matrix. POLYM. COMPOS. 37:1128–1136, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
Composites with damping–absorption performance and storage-loss behavior based on carbon nanotubes as a modifier and zinc titanate/room temperature vulcanized silicone rubbers as a matrix were fabricated by a reactive solution mixing process, wet ball milling, and the three-roller milling method. The microstructures, chemical structures, and morphologies of the composites were characterized by scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The thermal stabilities were investigated by thermogravimetric analysis. The effect of carbon nanotubes on the comprehensive performance of the carbon nanotube/zinc titanate/room temperature vulcanized silicon rubber composites was investigated. It was found that doping with carbon nanotubes can improve the comprehensive performance of the zinc titanate/room temperature vulcanized silicon rubber complex matrix. The best comprehensive properties were d33?=?72 pC/N, storage modulus?=?4,100?MPa, loss modulus?=?400?MPa, damping coefficient?=?0.23, and absorption coefficients?=?0.4–0.6 for 4?wt% carbon nanotube/zinc titanate/room temperature vulcanized silicon rubber. In addition, the lattice parameters of zinc titanate were found to be highly dependent on the carbon nanotube content, and the absorption and damping performance of the composites were dependent on the frequency and temperature.  相似文献   

16.
Graphite exfoliation by shear‐induced dry and wet processes and especially mechanochemistry represent attractive routes to carbon nanofillers. Dry ball‐milling of graphite in a planetary mill under gas pressure is a scalable and environmentally benign one‐step process, which requires neither hazardous solvents nor tedious separate functionalization and purification steps. Gas type, pressure, and milling duration govern average particle size, shape, and functionalization. Ball‐milling under Ar yields hydroxylated spherical carbon particle agglomerates, whereas ball‐milling under CO2 affords functionalized nanoplatelets without encountering agglomeration problems and highly exothermic post‐milling reactions with air. The carboxylation of graphene nanoplatelets enhances their dispersibility in various media including polypropylene (PP) even in the absence of compatibilizers. Large amounts of carboxylated nanoplatelets are dispersed in PP without massive viscosity build‐up. Functionalized carbon nanoplatelet fillers enable tailoring of recyclable lightweight carbon/hydrocarbon composites exhibiting an improved balance of stiffness, strength, toughness, electrical, and thermal conductivity.  相似文献   

17.
A cryogenic ball‐milling process to produce polymer/CNT nanocomposites was investigated. Linear low density polyethylene was used as the matrix material and 1 wt % of multiwalled carbon nanotubes (MWCNT) was used as reinforcement. The influence of the milling time and balls size was evaluated. The morphology of the nanocomposite and the degree of dispersion of the MWCNTs were studied using scanning electron microscopy (SEM), visual inspection, and light transmission microscopy; ropes as well as aggregates of MWCNTs were observed, and there was evidence of wetting of the nanotubes by the matrix polymer. An increase of up to 28% in the elastic modulus (determined by tensile testing) with respect to the matrix was obtained. Differential scanning calorimetry (DSC) analysis showed evidence of increase in the degree of crystallization, a result of the nucleating capability of the carbon nanotubes in the matrix. The degradation temperature of the nanocomposites does not show significant variations with respect to the unfilled polymer. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Multi walled carbon nanotubes have been incorporated into a linear low density polyethylene matrix through high energy ball milling technique at room temperature, without any chemical modification or physical treatment of the nanotubes. Highly oriented samples, with different draw ratios, were obtained by drawing at 80 °C the composite films. SEM and FTIR results on the drawn PE films demonstrate that the molecular chains in both crystalline and amorphous phases are well oriented along the drawing direction. The effect of different weight percent loadings of nanotubes and draw ratio on the morphology, thermal, mechanical and electrical properties of the composite fibers have been investigated.  相似文献   

19.
碳纳米管表面改性及其应用于复合材料的研究现状   总被引:1,自引:0,他引:1  
孟胜皓  闫军  汪明球  杜仕国  王琦 《化工进展》2014,33(8):2084-2088
对碳纳米管进行表面改性可提高碳纳米管的表面活性、分散能力和与基体材料之间的相容性,从而提高其在复合材料中的增强效果。本文介绍了碳纳米管表面改性的方法,分为物理法和化学法,物理法主要有高能机械研磨法、高能球磨法和超声振动法;化学法主要有酸处理法、偶联剂法、化学镀法、高能射线辐照法和原子转移自由基聚合法。在实际应用中常将几种改性方法联合使用,使得到的改性产物性能更稳定,性质更多样化。同时,介绍了改性后的碳纳米管在各种复合材料中的应用现状。并指出了对碳纳米管进行改性的两个重点:一是尽量保持碳纳米管的本身结构完整性;二是提高碳纳米管在基体中的分散性。  相似文献   

20.
Effects of ball milling way and time on the phase formation, particulate morphology, carbon content, and consequent electrode performance of LiFePO4/C composite, prepared by high-energy ball milling of Li2CO3, NH4H2PO4, FeC2O4 raw materials with citric acid as organic carbon source followed by thermal treatment, were investigated. Three ball milling ways and five different milling durations varied from 0 to 8 h were compared. LiFePO4/C composites could be obtained from all synthesis processes. TEM examinations demonstrated LiFePO4/C from ball milling in acetone resulted in sphere shape grains with a size of ∼60 nm, similar size was observed for LiFePO4/C from dry ball milling but in a more irregular shape. The ball milling in benzene resulted in a much larger size of ∼250 nm. The LiFePO4/C composites prepared from dry ball milling and ball milling in acetone showed much better electrochemical performance than that from ball milling in benzene. SEM examinations and BET measurements demonstrated that the high-energy ball milling effectively reduced the grain size. A ball milling for 4 h resulted in the best electrochemical performance, likely due to the proper amount of carbon and proper carbon structure were created.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号