首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanofibers (CNFs) of high graphitization degree were prepared by a CVD process at 550-700 °C. They showed different structures according to catalyst and preparation temperatures. The structure of CNF prepared from CO/H2 over an iron catalyst was controlled from platelet (P) to tubular (T) by raising the decomposition temperature from 550 to 700 °C. The CNFs prepared over a copper-nickel catalyst from C2H4/H2 showed the typical herringbone (HB) structure regardless of the reaction temperatures. The CNFs prepared over Fe showed d002 of 0.3363-0.3381 nm, similar to that of graphite, indicating very high graphitization degree in spite of the low preparation temperature. Such CNFs of high graphitization degree showed high capacity of 297-431 mA h/g, especially in the low potential region. However, low first cycle coulombic efficiency of ≈60% is a problem to be solved. The graphitization of the CNF preserved the platelet texture, however, and formed the loops to connect the edges of the graphene sheets. Higher graphitization temperatures made the loop more definite. The graphitized CNF showed high capacity (367 mA h/g); however, its coulombic efficiency was not so large despite its modified edges by graphitization, indicating that the graphene edges were not so influential for the irreversible reaction of Li ion battery.  相似文献   

2.
Atsushi Tanaka  Isao Mochida 《Carbon》2004,42(7):1291-1298
The morphological changes of Fe-Ni catalyst for the preparation of carbon nanofiber (CNF) were examined at 5 steps; (1) the precipitation of Fe-Ni carbonate from Fe-Ni nitrate solution, (2) the calcination of Fe-Ni carbonate into Fe-Ni oxide, (3) the reduction of Fe-Ni oxide, (4) the second reduction of Fe-Ni metal before the growth of CNF, and (5) the reaction with CO/H2 for the growth of CNF. The Fe-Ni fine particle was formed from the Fe-Ni aggregate through the second reduction and successive CNF growth from CO/H2. The temperature of these two steps is the most important factor which determines the size and shape of the Fe-Ni fine particle as a catalyst for CNF growth. The lower temperature of 580 °C provided hexagonal particles with very smooth surface sized around 100-200 nm which allowed the growth of platelet CNFs of the same diameter and cross-sectional shape of the formed catalyst particle. At the higher temperature of 630 °C, the Fe-Ni aggregate was found to give the very fine Fe-Ni particles by the two steps; the first step did the Fe-Ni particle sized around 100-500 nm which was successively degraded into smaller particles sized around 20-40 nm, thinner tubular CNFs growing with the contact of CO/H2. Such smaller particles definitely originated from as-precipitated Fe-Ni carbonate through the steps. The metal particle on the top of CNF was almost exclusively composed of Fe although the catalyst particle before the growth of CNFs carried around 65% of iron and 35% of nickel. The preferential activity of Fe to CO gas may cause such the selectivity. The major role of Ni in the present reaction should be limited to provide the uniform particle of Fe. Controlling the size of the Fe-Ni particle through the reduction and reaction steps was proved to be a key factor to determine the dimension and structure of resultant CNF.  相似文献   

3.
Shihai Xu 《Carbon》2009,47(14):3233-3237
The effect of an externally applied magnetic field on the Fe-Ni catalyzed graphitization of phenolic resin was investigated. The Fe and Ni doped phenolic resin was first carbonized at 800 °C and then graphitized at different temperatures (800-1200 °C). Both the carbonization and graphitization were carried out in a magnetic field and the crystal structure was characterized by X-ray diffraction and transmission electron microscopy. The externally applied magnetic field was found to promote the graphitization and to improve the orientation of the hexagonal carbon layers. In the presence of Fe-Ni, a high degree of graphitization could be achieved by applying a magnetic field. This resulted in a d002 of 0.3355 nm and full-width at half maximum (FWHM) value of 0.103° after a 1200 °C heat treatment. In comparison, the absence of a magnetic field resulted in a d002 of 0.3358 nm and FWHM of 0.305°.  相似文献   

4.
Guifu Zou  Dawei Zhang  Hui Li  Linfeng Fei 《Carbon》2006,44(5):828-832
Carbon nanofibers (CNFs) have been synthesized by co-catalyst deoxidization process by a reaction between C2H5OC2H5, Zn and Fe powder at 650 °C for 10 h. These nanofibers exhibit diameters of ∼80 nm and lengths ranging from several micrometers to tens of micrometers. X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy indicate that as-prepared CNFs possess low graphitic crystallinity. The resultant CNFs as electrode shows capacity of ∼220 mAh/g and high reversibility with little hysteresis in the insertion/deintercalation reactions of lithium-ion. In addition, the possible growth of CNFs is discussed.  相似文献   

5.
Chao-Wei Huang 《Carbon》2009,47(3):795-726
Turbostratic carbon nanofibers (CNFs), platelet graphite nanofibers (PGNFs) and tubular graphite nanofibers (TGNFs, also called multi-walled carbon nanotubes) were synthesized using thermal decomposition from a mixture of poly(ethylene glycol) and NiCl2. A detailed study found that the synthesis temperature dramatically affected the morphology and topography of the catalysts, which play an important role in the synthesis of the various CNFs. At the temperature of 600 °C, irregular shape nanocatalysts with very rough surfaces were formed for the synthesis of turbostratic CNFs. Cubic-like nanocatalysts were formed at 750 °C for PGNFs and truncated cone-like nanocatalysts were formed at 850 °C for TGNFs. The surface roughness and the shape of the catalysts determined the stacking order of the graphene layers so that different types of CNF were formed. The growth direction of the graphene layers was from the Ni(1 1 1) plane for PGNFs and from the Ni(1 1 0) plane for TGNFs. Characterizations and field emission properties of these materials were also studied and compared.  相似文献   

6.
Fishbone carbon nanofibers (CNFs) were produced by methane decomposition in a fluidized bed reactor using nickel-copper based catalysts that were prepared with different promoters (SiO2, Al2O3, TiO2, MgO). The CNFs were subjected to heat treatment (HT) in the temperature range 2400-2800 °C to explore their ability to graphitize. The influence of treatment temperature and CNF metal content on the structural and textural parameters of the resulting heat treated carbon nanofibers was studied. More-ordering was achieved in CNFs containing Si and Ti because of the catalytic effect of these metals. Since titanium carbide appeared after the HT, the formation of graphitic material by carbide decomposition seems to be a plausible mechanism to explain the catalytic graphitization of the CNFs. A parallel evolution of the structural and textural properties of the nanofibers during HT was found, suggesting that a decrease of the specific surface area is caused by the removal of structural defects and an increase of crystallite size.  相似文献   

7.
Seung-Yup Lee 《Carbon》2005,43(13):2654-2663
The synthesis of carbon nanotubes (CNTs) through the catalytic decomposition of acetylene was carried out over gold nanoparticles supported on SiO2-Al2O3. Monodispersed gold nanoparticles with 1.3-1.8 nm in diameter were prepared by the liquid-phase reduction method with dodecanethiol as protective agent. The carbon products formed after acetylene decomposition consist of multi-walled carbon nanotubes with layered graphene sheets, carbon nanofilaments (CNFs), and carbon nanoparticles encapsulating gold particles. The observed CNTs have outer diameters of 13-25 nm under 850 °C. The influence of several reaction parameters, such as kind of carriers, reaction temperature, gas flow rate, was investigated to search for optimum reaction conditions. The CNTs were observed at a relatively low temperature (550 °C). The silica-alumina carrier showed higher activity for the formation of CNTs than others used in the screening test. With increasing temperature, the CNTs showed cured structures having thick diameters and inside compartments. When Au content on the support was over 5 wt.%, the gold nanoparticles coagulated to form large ones >20 nm in diameter and became encapsulated with graphene layers after decomposition of acetylene.  相似文献   

8.
Structural rearrangement of helical-ribbon carbon nanofibers (CNFs) was studied as a function of graphitization temperature. The as-produced nanofibers are composed of a helical ribbon of graphene spiralled about and angled to the fiber axis. The discrete layers of graphene ribbon overlap each other forming the helical-ribbon in contrast to the discontinuous cones of the more common stacked-cup CNF morphology. After heat treatment to 2400 °C and above, the CNFs were completely free of residual metal catalyst inclusions, principally nickel used in their synthesis, and other functionalities. The formation of loops at the graphene edges was also observed. Heat treatment through the temperature range 1500-2800 °C resulted in a relatively minor contraction in interlayer spacing d002 from 0.3381 to 0.3363 nm. This was attributed to the highly graphitic character of the as-produced CNFs. However, there were significant increases in the crystallite thickness Lc through this temperature range. In addition, heat treatment above 2400 °C induced a marked change of the nanofiber morphology from circular to faceted polygonal cross-section resulting from the re-ordering of the turbostratic, curved graphene layers to regions of planar graphene layers with 3-dimensional graphitic structure (AB stacking).  相似文献   

9.
Reaction of propene over silica-, alumina- or titania-supported Ru catalysts in a tubular quartz flow reactor at moderate temperatures (500-700 °C) and atmospheric pressure produced Ru containing carbon nanofibres/tubes. TEM studies revealed that the fibres/tubes grew away from the support and contained Ru metal particles in their tips. The results indicate that sintering of the Ru during reduction with H2, to a critical size not less than 30 nm, is required for fibre/tube formation.  相似文献   

10.
O.C. Carneiro  R.T.K. Baker 《Carbon》2005,43(11):2389-2396
The growth of carbon nanofibers from Fe-Cu catalyzed decomposition of CO/C2H4/H2 mixtures at temperatures over the range 500-650 °C has been investigated. Based on analysis of the gas phase and solid products it is apparent that co-adsorption of CO and C2H4 induces major perturbations in the surfaces of the bimetallic catalyst particles. These features are reflected in an increase in the yield of solid carbon and subtle changes in the structural characteristics of the carbon nanofibers. Optimum performance with respect to the yield of carbon nanofibers is found for iron-rich particles treated in CO/C2H4/H2 (1:3:1) at 600 °C. Deactivation of the catalyst is observed to occur with high Cu concentrations and at reaction temperatures in excess of 600 °C. It is suggested that under these conditions the surface of the particles in contact with the reactant gas mixture become enriched in Cu, which does not possess the ability to dissociatively chemisorb either CO or C2H4.  相似文献   

11.
The synthesis of carbon nanofibers was carried out by catalytic decomposition of ethylene in presence of hydrogen. Bimetallic catalysts, e.g. Fe-Cu or Ni-Cu, were synthesized by coprecipitation, reduction-precipitation and reverse microemulsion techniques and were proven to have a strong influence on the morphology of the nanofibers. The best results in terms of synthesis homogeneity were obtained by supporting the bimetallic catalyst on a high surface area silica support by the “incipient wetness” method. The hydrogen storage capacity of carbon nanofibers was tested in a custom made Sievert apparatus operating up to 160 bar and 450 °C. Several “in situ” activation procedures were experimented, however according to our data carbon nanofibers do not seem a suitable candidate for hydrogen storage. With the purpose of promoting a “spillover” function, 2 wt.% Pd-doped nanofibers were prepared. After loading at 77 bar, a hydrogen storage of 1.38 ± 0.30 wt.% was measured at room temperature.  相似文献   

12.
H.Y WangE Ruckenstein 《Carbon》2002,40(11):1911-1917
The carbon formation during methane decomposition was investigated at 900 °C over the 48 wt% Co-MgO catalysts as a function of the calcination temperature Tc used in their preparation. Examination of the carbonaceous deposits by transmission electron microscopy revealed three kinds of structures: shapeless tangles, shell-like materials, and carbon filaments. In another set of experiments, the structural characteristics of the calcined catalysts were investigated using temperature-programmed reduction (TPR) and X-ray diffraction (XRD). Co3O4, Co2MgO4, and (Co, Mg)O (solid solution of CoO and MgO) were identified for Tc≤700 °C, Co3O4 and (Co, Mg)O for Tc=800 °C and only (Co, Mg)O for Tc=900 °C. It was found that the metal particles originated from the reduction of the solid solution favored the formation of filamentous carbon. A possible explanation is proposed.  相似文献   

13.
Catalytic filamentous carbon (CFC) synthesized by the decomposition of methane over iron subgroup metal catalysts (Ni, Co, Fe or their alloys) is a new family of mesoporous carbon materials possessing the unique structural and textural properties. Microstructural properties of CFC (arrangement of the graphite planes in filaments) are shown to depend on the nature of catalyst for methane decomposition. These properties widely vary for different catalysts: the angle between graphite planes and the filament axis can be 0° (Fe-Co-Al2O3), 15° (Co-Al2O3), 45° (Ni-Al2O3), 90° (Ni-Cu-Al2O3). The textural properties of CFC depend both on the catalyst nature and the conditions of methane decomposition (T, °C). The micropore volume in CFC is very low, 0.001-0.022 cm3 g−1 at the total pore volume of 0.26-0.59 cm3 g−1. Nevertheless, the BET surface area may reach 318 m2 g−1. Results of the TEM (HRTEM), XRD, Raman spectroscopic, SEM and adsorption studies of the structural and textural properties of CFC are discussed.  相似文献   

14.
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time.  相似文献   

15.
Haijun Li 《Carbon》2005,43(4):849-853
Individual high-aspect-ratio carbon nanofibers (CNFs) were grown on tungsten filament substrates by plasma-enhanced hot filament chemical vapor deposition. They are ∼100 nm in diameter and 6-30 μm in length with a density less than 106/cm2. The field emission property of single as-grown carbon nanofibers was measured in a scanning electron microscope equipped with a moveable nanoscale probe tip. The measurement results showed that the threshold field of single carbon nanofibers with different lengths was in the range of 4-5 V/μm with a corresponding emission current density of 20 μA/cm2, but an evident difference in the enhancement of emitted current between nanofibers of different lengths could be found when the applied field was increased continuously. This indicates that the field emission property of single carbon nanofibers depends mainly upon their length, which is essentially attributed to the change of field enhancement factor of single carbon nanofibers. In addition, field emission of the different positions on the wall of a single carbon nanofiber was studied.  相似文献   

16.
Entangled carbon nanofibers (CNFs) were synthesized on a flexible carbon fabric (CF) via water-assisted chemical vapor deposition at 800°C at atmospheric pressure utilizing iron (Fe) nanoparticles as catalysts, ethylene (C2H4) as the precursor gas, and argon (Ar) and hydrogen (H2) as the carrier gases. Scanning electron microscopy, transmission electron microscopy, and electron dispersive spectroscopy were employed to characterize the morphology and structure of the CNFs. It has been found that the catalyst (Fe) thickness affected the morphology of the CNFs on the CF, resulting in different capacitive behaviors of the CNF/CF electrodes. Two different Fe thicknesses (5 and 10 nm) were studied. The capacitance behaviors of the CNF/CF electrodes were evaluated by cyclic voltammetry measurements. The highest specific capacitance, approximately 140 F g−1, has been obtained in the electrode grown with the 5-nm thickness of Fe. Samples with both Fe thicknesses showed good cycling performance over 2,000 cycles.  相似文献   

17.
Catalytically grown carbon nanofibers, a novel mesoporous carbon material for catalysis, were synthesized by the decomposition of carbon-containing gases (CH4, C2H4 or CO) over supported nickel-iron alloy and unsupported iron. It was shown that the structures of as-synthesized and modified CNFs, including the arrangement of the graphenes in CNF, and the crystallinity and texture of CNF depended on the catalyst composition and the type of carbon-containing gas. Three types of CNFs with different microstructures were obtained: platelet CNF (Fe–CO), fishbone CNF (supported Ni–Fe alloy-CH4, C2H4 or CO) and tubular CNF (supported Ni–CO). All the CNFs were mesoporous carbon materials possessing relatively high surface areas (86.6–204.7 m2/g) and were highly graphitic. Purification with acid-base treatments or high temperature treatment removed the catalyst residue without changing the basic structures of the CNFs. However, annealing significantly decreased their surface areas through the formation of loop-shaped ends on the CNF surfaces. Oxidative modification in the gas and liquid phases changed the structures only slightly, except for oxidation in air at 700 °C. The structures and textures were studied using SEM, TEM, XRD, BET and TGA.  相似文献   

18.
Sulfated TiO2 nanotubes and a series of iron oxide loaded sulfated TiO2 nanotubes catalysts with different iron oxide loadings (1 wt%, 3 wt%, 5 wt% and 7 wt%) were prepared and calcined at 400 °C. The physico-chemical properties of the catalysts were studied by using XRD, N2-physisorption, Raman spectroscopy, SEM-EDX, TEM, XPS, and pyridine adsorption using FTIR and H2-TPR techniques. It was observed that iron oxide was highly dispersed on the sulfated TiO2 nanotube support due to its strong interaction. The activity of these catalysts in the catalytic removal of NO with propane was also studied in the temperature range of 300–500 °C. Highest activity (90% NO conversion) was observed with 5 wt% iron oxide supported on sulfated TiO2 catalyst at 450 °C. Selective catalytic reduction of NO activity of the catalysts was correlated with iron oxide loading, reducibility, and the Brönsted and Lewis acid sites of the catalysts. The catalyst also showed good stability under studied reaction conditions that no deactivation was observed during the 50 h of reaction.  相似文献   

19.
The formation of carbon nanofibers (CNFs) doped with nitrogen was investigated during decomposition of C2H4/NH3 mixtures at 450-675 °C over metal catalysts: 90Ni-Al2O3, 82Ni-8Cu-Al2O3, 65Ni-25Cu-Al2O3, 45Ni-45Cu-Al2O3, 90Fe-Al2O3, 85Fe-5Co-Al2O3, 62Fe-8Co-Al2O3, 62Fe-8Ni-Al2O3. It was found that the yield of CNFs, their structural and textural properties, as well as nitrogen content in CNFs are strongly dependent on the synthesis conditions such as: catalyst used, feed composition, temperature and duration. The 65Ni-25Cu-Al2O3 was proved to be the most efficient catalyst for the production of nitrogen-containing carbon nanofibers (N-CNFs) with nitrogen content up to 7 wt.%. Ammonia concentration in the feed equal 75 vol.%, temperature 550 °C and duration 1 h were found to be the optimum reaction parameters to reach the maximum nitrogen content in N-CNFs. TEM studies revealed that the nanofibers have a helical morphology and a “herringbone” structure composed of graphite sheets. According to the XPS data, the nitrogen incorporation in the N-CNF structure leads to the formation of two types of nitrogen coordination: pyridinic and quaternary, and their abundance depends on the reaction conditions.  相似文献   

20.
Formation of ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate in air atmosphere has been investigated using XRD, DTA, FT-IR, and FE-SEM as experimental techniques. ZnO as a single phase was produced by direct heating at ≥200 °C. DTA in air showed an endothermic peak at 195 °C assigned to the ZnO formation and exothermic peaks at 260, 315 and 365 °C, with a shoulder at 395 °C. Exothermic peaks can be assigned to combustion of an acetylacetonate ligand released at 195 °C. ZnO particles prepared at 200 °C have shown no presence of organic species, as found by FT-IR spectroscopy. Particles prepared for 0.5 h at 200 °C were in the nanosize range from ∼20 to ∼40 nm with a maximum at 30 nm approximately. The crystallite size of 30 nm was estimated in the direction of the a1 and a2 crystal axes, and in one direction of the c-axis it was 38 nm, as found with XRD. With prolonged heating of ZnO particles at 200 °C the particle/crystallite size changed little. However, with heating temperature increased up to 500 or 600 °C the ZnO particle size increased, as shown by FE-SEM observation. Nanosize ZnO particles were also prepared in two steps: (a) by heating of zinc acetylacetonate monohydrate up to 150 °C and distillation of water and organic phase, and (b) with further heating of so obtained precursor at 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号