首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-chain alkylnaphthalene sulfonates were synthesized by means of a Wurtz-Fittig reaction, and the basic properties were studied in water at 30°C. Through surface tension measurements, the following values were determined: the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC). The following values were calculated: area per molecule at the CMC (ACMC), standard free energy change of micellization (ΔG mic o ), standard free energy of adsorption (ΔG ad o ), and the “efficiency” of a surfactant in reducing surface tension (pC20). The micelle aggregation numbers were measured through steady-state fluorescence-quenching methods. As the chain length of the hydrocarbon of n-alkylnaphthalene sulfonate increased, the Krafft temperature increased, the surface tension decreased, the value of CMC decreased, pC20 increased, ΔG ad o and ΔG mic o became more negative, and the micelle aggregation number increased. The results showed that sodium α-(n-decyl)naphthalene sulfonate (DNS) had a high pC20, low Krafft temperature, and lower CMC than other surfactants in this study. Thus, DNS and the other n-alkylnaphthalene surfactants studied exhibit desirable properties that may be of value in some fields such as detergency, oil recovery, and dyes.  相似文献   

2.
n-Alkyl α-and β-glucopyranosides, α-D-mannopyranosides and β-D-galactopyranosides with alkyl chains having from 8 to 12 carbon atoms were synthesized and their surface properties-such as static surface tension (γ), critical micelle concentration (CMC), occupation area of molecule, dynamic surface tension and foaming properties, biodegradability and antimicrobial activities—were evaluated. Alkyl glycosides containing C8 to C12 carbon chains showed surface activities and critical micelle concentrations. D-Glucoside, D-mannoside and D-galactoside having the same alkyl chain showed similar surface tension lowering at CMC (γCMC) and occupation area of the molecule at the surface. Among the alkyl glucosides, α-anomers were less hydrophilic than β-anomers. All alkyl glycosides tested in this study were readily biodegraded by activated sludge of a municipal sewage plant compared to those of ethoxylated nonionic alcohols. The difference of the hydrophilic glycopyranoside group in biodegradability was not seen clearly. n-Alkyl glycosides containing C8 to C12 alkyl chains showed a broad spectrum of increasing antimicrobial activity. n-Dodecyl α-D-mannopyranoside was the most effective, the order of antimicrobial activity being mannopyranoside > glucopyranoside > galactopyranoside group. Members of this class of compounds exhibit the physicochemical and biological properties needed both for a wide range of applications and for environmental acceptance.  相似文献   

3.
Bis(sulfonate) types of amphipathic compounds with three long- chain alkyl groups were prepared by the reaction ofN- (long- chain acyl)diethanolamine diglycidyl ethers with long- chain fatty alcohols, followed by the reaction with propanesultone. The diglycidyl ethers were easily obtained from the correspondingN- acyldiethanolamines and epichlorohydrin in the presence of a phasetransfer catalyst. The same types of compounds with two longchain alkyl groups were also prepared from Nacetyldiethanolamine according to similar procedures. All these new double- or triple- chain surfactants were soluble in water and showed much better micelle forming and ability to lower surface tension than general types of single- chain surfactants with one sulfonate group. The critical micelle concentration (CMC) and γCMC values of the triple- chain compounds were still much smaller than those of the corresponding double- chain compounds with two common alkyl groups. The efficiency of adsorption at the water/air interface (pC20) of these surfactants was very high. Their foaming properties, wetting ability toward a felt chip, and lime- soap dispersing ability were measured. To whom correspondence should be addressed at Department of Applied Chemistry, Faculty of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565, Japan.  相似文献   

4.
The surface properties [effectiveness of surface tension reduction (γCMC) critical micelle concentration (CMC), efficiency of surface tension reduction (pC 20), maximal surface excess concentration (Γmax), minimal area/molecule at the interface (A min), and the (CMC/C 20) ratio] of some well-purified N-alkanoyl-N-methyl glucamines and related polyol-based N-methyl amide-type surfactants, having the structural formula RC(O)N(Me)CH2(CHOH)xCH2OH, where RC(O)=undecanoyl, lauroyl, tridecanoyl, myristoyl, and x=1,3, and 4, were investigated at 25°C in distilled water and 0.1 M NaCl. Water solubility of these compounds does not simply depend on the number of hydroxyl groups in the molecule but is associated with the balance between intermolecular hydrogen bonds and hydrogen bonds formed with water molecules. The fundamental interfacial properties, such as CMC and γCMC and two thermodynamic parameters, standard free energy of adsorption and standard free energy of micellization, were found to be significantly dependent on the hydrophobic acyl chain rather than on the number of CHOH groups in the hydrophilic moieties. By contrast, the practical performance properties were greatly dependent on the nature of the hydrophilic group. As a whole, these surfactants had desirable foaming properties and efficient wetting abilities. Furthermore, synergism in foaming and wetting abilities was observed in a binary mixture of these surfactants with an alkyloxyethylene sulfate.  相似文献   

5.
The surface properties [effectiveness of surface tension reduction (γCMC), critical micelle concentration (CMC), efficiency of surface tension reduction (pC 20), maximum surface excess concentration (ΓCMC), minimum area/molecule at the interface (A min), and the CMC/C 20) ratio] of well-purified N-substituted glycine derivatives, having the structural formula RC(O)N(R′)CH2COONa, where RC(O)=lauroyl, myristoyl, or oleoyl, and R′=Et, Pr, Bu, CH2CH2OH or CH2CH2CH2OCH3, were investigated at 25°C in hard river water and distilled water. These surfactants show greater surface activity in hard river water than in distilled water. The effect of both the main alkyl chain R and the N-substituent R′ on surface properties was elucidated, the oleoyl group showing properties equivalent to that of a C16 saturated acyl group. A linear relationship was observed between the pC 20 or CMC values and the number of carbon atoms in the alkyl chain R or in R′ when it was alkyl. With increase in the number of carbon atoms in either R or the N-substituent R′ when it is alkyl, both pC 20 and micelle-forming ability increase, although the effect of R′ on the foregoing two surface properties is lower than that of R. When R′ is (CH2)3OCH3, however, the results suggest that R′ is only partly removed from contact with the aqueous phase either upon adsorption at the water/air interface or upon micellization. It increases A min, is equivalent only to an ethyl group in its effect on pC 20 and to a methyl group in its effect on CMC, and, in contrast to the effect of R′ when it is alkyl, produces no increase in the CMC/C 20 ratio. As a result, γCMC increases with R when R′ is alkyl and decreases with R when R′ is (CH2)3OCH3.  相似文献   

6.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

7.
A series of nonylphenol-substituted alkyl sulfonates (C x NPAS, x = 8, 10, 12, 14, 16) with two hydrocarbon chains and two different hydrophilic groups has been synthesized from α-olefins and nonylphenol. The respective products have a “pseudo-gemini” surfactant structure. The structures of the C x NPAS have been characterized by IR, UV, 1H nuclear magnetic resonance, electrospray ionization mass spectrometry, and elemental analysis. The effects of carbon chain length of the obtained surfactants on properties such as the critical micelle concentrations (CMC) in aqueous solutions, surface tension at the CMC (γ CMC), and efficiency of adsorption at the water/air interface (pC 20) have been determined. The γ CMC of the surfactants first decreased and then increased with increasing length of the carbon chain x, and reached a minimum of 29.25 mN/m at x = 10, which is much lower than that of α-olefin sulfonate (AOS) (33.52 mN/m). The CMC decreased and pC 20 increased with increasing x. The introduction of the hydroxyl group is responsible for multiple molecular conformations at the water/air interface and leads to a greater molecular area A min and smaller Γmax than those of AOS.  相似文献   

8.
A novel homologous series of 1-N-l-phenylalanine-glycerol ether surfactants was synthesized in satisfactory yields via reaction of epichlorohydrin with aliphatic alcohols with alkyl chains of 10–15 carbon atoms. Structural assignment of the new compounds was made on the basis of elemental analysis and spectroscopic data. Critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN/m (pC20), and the interfacial area occupied by the surfactant molecules (Amin) were determined from aqueous surface tension measurements using the Wilhelmy plate technique.  相似文献   

9.
A novel zwitterionic imidazolium-based ionic liquid (IL) surfactant, 1-carboxymethyl-3-dodecylimidazolium inner salt, was synthesized. The molecule structure was confirmed by means of electrospray ionization mass spectrometry, 1H nuclear magnetic resonance and elemental analysis. The isoelectric point (pI) is 3.8 ± 0.1 at 35 ± 0.1 °C. The other important physicochemical parameters such as the critical micelle concentration (CMC), the surface tension at CMC (γCMC), the adsorption efficiency (pC 20), the surface pressure at CMC (ΠCMC), the maximum surface excess (Γm), the minimum molecular cross-sectional area (A min), the value of CMC/C 20 and the average number of aggregation (N m) were determined by surface tension and steady-state fluorescence probe methods, respectively.  相似文献   

10.
Some surface properties of hydroxamic acids, ketones and methyl esters, which all contained long-chain alkyl[tetra-(oxyethylene)] group, were measured and compared to clarify the influence of the terminal functional group on surface properties. From the results of cloud point (T cp ), CMC, γ CMC , adsorption area per molecule at the surface (A) and foaming properties, it was proved that hydroxamic acids had better hydrophilicity and showed better surface properties than the corresponding ketones, methyl esters or typical monodisperse nonionic surfactants.  相似文献   

11.
A series of novel cationic gemini surfactants, C n H 2n+1 N+(CH3)2CH2CHOHCHOHCH2N+(CH3)2C n H 2n+1 ·2Br, have been synthesized, and their surface properties were investigated in water, 0.1 N NaCl, and 0.1 N NaBr at 25°C. From surface tension-log molar concentration plots, the pC20, critical micelle concentration (CMC), and γCMC values have been determined, and the area/molecule at the aqueous solution/air interface was calculated. When the number of carbon atoms in the alkyl (hydrophobic) chains is above a certain number, which depends upon the molecular environment, the surface activity of the compounds is less than expected. This appears to be due to formation of small, soluble aggregates below the CMC. Equilibrium constants calculated for this aggregation indicate that a series of oligomers are formed.  相似文献   

12.
Dialkylated diphenylether disulfonate with different alkyl chain lengths (Cn‐DADS, n = 8, 10 and 12) has been synthesized by Friedel‐Crafts alkylation of olefins (C8, C10 and C12) and diphenyl oxide, followed by sulfonation and neutralization with fuming sulfuric acid. Sulfated zirconia solid acids were prepared and used to catalyze the alkylation reaction. The structure of sulfated zirconia solid acids was identified by infrared spectroscopy. The title compounds were confirmed by infrared spectroscopy and electrospray ionization‐mass spectrometry. Equilibrium surface tension measurements show that the critical micelle concentration (CMC) decreases with an increase in chain length, and the surface tension at CMC (γcmc) of C8‐DADS is the lowest. The minimum area per molecule (Amin) values of Cn‐DADS increase, while the surface excess concentration (Γmax) values decrease with the increase of the alkyl chain length. C10‐DADS has the highest pC20 and CMC/C20 among Cn‐DADS.  相似文献   

13.
A series of carboxylate gemini surfactants, which contain two hydrocarbon chains linked by amide groups, two carboxylate groups, a flexible alkane spacer were synthesized by three-step reactions and named alkylidene–bis-(N,N′-dodecyl-carboxypropylamides) (2C12H25CnAm; n = 2, 3, 4, 6, 8 is the number of methylene groups of the spacer), their structures were confirmed by FTIR,1H NMR, and LC–MS/TOF, and their purity checked by HPLC. The micellar properties with increasing spacer chain length of these gemini surfactants were determined by surface tension methods. The critical micelle concentration (CMC) varies slightly with spacer chain length; surface tension at CMC(γCMC), the tendency of micellization versus adsorption, CMC/C20, the minimum area per surfactant molecule at the air/solution interface (ACMC), all decrease with increasing spacer chain length; surface reduction efficiency, pC20, the surface excess at the air/solution interface (ГCMC) increase with increasing spacer chain length. The results probably indicate that increasing spacer chain length of these carboxylate gemini surfactants will increase spacer incorporation into the double hydrophobic chain.  相似文献   

14.
Four diakylimidazolium ionic liquids, namely 1-alkyl-3-dodecylimidazolium bromides ([C12C n im]Br) with the same dodecyl long-chain tail (C12) and the short alkyl side chain (C n , n = 1–4), were synthesized, and their molecule structures were confirmed by ESI–MS, 1H-NMR and elemental analysis. The physicochemical properties of [C12C n im]Br (n = 1–4) were determined by means of surface tension and fluorescence probe methods, respectively. It was found that elongation of the side chain length will bring about an enhancement of surface activity. Along with the side chain length increasing, the critical micelle concentration (CMC), surface tension at CMC (γ CMC), the maximum surface excess (Γm), micellar aggregation number (N m) and micellar microenvironment polarity of [C12C n im]Br decrease, while adsorption efficiency (pC 20), surface pressure at CMC (ΠCMC), the minimum molecular cross-sectional area (A min) at air-solution interfaces and CMC/C 20 ratio increase.  相似文献   

15.
A straightforward synthetic strategy to an anionic gemini surfactant having both N-acylamide and carboxylate groups in a molecule has been demonstrated. The surface properties of the anionic gemini surfactant, such as CMC (critical micelle concentration), C20 (the concentration required to reduce the surface tension of the solvent by 20 mN/m), γ CMC (the surface tension at the CMC), CMC (the surface pressure at the CMC), Γ max (the maximum surface excess concentration at the air/aqueous solution interface), A min (the minimum area per surfactant molecule at the air/water interface), and the CMC/C20 ratio (a measure of the tendency to form micelles relative to adsorbtion at the air/water interface), have been studied. The influence of the different concentrations of NaCl on the surface properties of the gemini surfactant has been discussed. The results have shown that the CMC values decreased with an increase in the concentration of NaCl indicating that the Na+ preferentially adsorbs onto the surface of the charged aggregate and facilitates the aggregate growth by suppressing the main impediment of electrostatic repulsion among head groups. Additionally, the values of Γ max are always higher in salt solutions as compared to those in pure water due to their salting out effect. The larger pC20 value indicates that the surfactant adsorbs more efficiently at the air/water interface and reduces surface tension more efficiently. In addition, the geminis in water show little or no break in their specific conductance versus surfactant molar concentration plots. This is attributable to protonation of the carboxylate group and strong Na+ release during micellization.  相似文献   

16.
Interfacial properties (surface tension, σ, and critical micelle concentration, CMC) of aqueous solutions of Tween 20 (polyoxyethylene sorbitan monolaurate) and/or bovine serum albumin (BSA) were evaluated. Temperature, Tween 20 concentration in the aqueous phase, BSA/Tween 20 ratio, and aqueous phase composition [water, ethanol (0.5, 1.0, and 2.5 M), and sucrose (0.5 M)] were the variables studied. The CMC of Tween 20 was determined by surface tension measurements (Wilhelmy plate method). The existence of BSA-Tween 20 interactions was deduced from surface tension measurements. The results show that the effect of temperature on CMC depends on the aqueous phase composition, but the σ value at CMC, σCMC, does decrease as temperature is increased. The CMC and σCMC values also depend on the aqueous phase composition. In aqueous ethanol solutions, the CMC increases, but σCMC decreases. However, in sucrose aqueous solutions, the CMC decreases, but there is no significant effect on σCMC. The BSA-Tween 20 interactions at the interface depend on both Tween 20 concentration (C) and solute in the bulk phase. In water and aqueous solutions of ethanol and sucrose, σ values decrease in the presence of protein at C<CMC but are practically independent of C at C>CMC. This is an indication that the interfacial characteristics of the mixed film are determined by either the protein or the lipid at the higher and lower protein/lipid ratio, respectively. In the intermediate region, the existence of BSA-Tween 20 interactions dominates the interfacial characteristics of mixed films.  相似文献   

17.
A homologous series of new surface-active 1,1-bis{[3-(N,N-dimethylamino)propyl]amido}alkane-di-N-oxides were synthesized in the reaction of an appropriate diethyl 2-alkylmalonate with N,N-dimethylamino-1,3-propanediamine followed by oxidation with aqueous hydrogen peroxide. The adsorption isotherms of their aqueous solutions were measured and evaluated to obtain adsorption parameters: critical micelle concentration (CMC), surface excess concentration (ΓCMC), equilibrium surface tension at the CMC (γCMC), cross-sectional area of the adsorbed surfactant molecule (A CMC), efficiency of surface adsorption (pC20), standard free energies of adsorption (ΔG°ads), and micellization (ΔG°CMC). All investigated di-amidoamines and di-N-oxides were practically non-toxic to selected bacteria and yeasts. These compounds are readily biodegradable in the Closed Bottle Test inoculated with activated sludge. Surface and biological properties showed that this group of N-oxide-type compounds has high surface activity and fulfills requirements for environmental acceptance.
Andrzej PiaseckiEmail:
  相似文献   

18.
This paper deals with the synthesis and self-aggregation of a hydroxyl-functionalized imidazolium-based ionic liquid (IL) surfactant, namely 1-hydroxyethyl-3-dodecylimidazolium chloride ([C2OHC12im]Cl). The molecular structure was confirmed by means of electrospray ionization mass spectrometry (ESI–MS), 1H nuclear magnetic resonance (1H NMR) and elemental analysis. Many important physicochemical parameters, such as the critical micelle concentration (CMC), the surface tension at CMC (γCMC), the adsorption efficiency (pC 20), the surface pressure at CMC (ΠCMC), the maximum surface excess (Γ m ), the minimum molecular cross-sectional area (A min), the value of CMC/C 20, the average number of aggregation (N m ) and the micellar microenvironment polarity were determined by surface tension-concentration curves, fluorescence spectra, and electrical conductivity. The phenomena of the second CMC, the concentration dependence of N m , and the critical average aggregation number (N m,c) of imidazolium-based IL surfactants are reported for the first time in this paper.  相似文献   

19.
A series of cleavable aryl sulfonate anionic surfactants were synthesized from cyanuric chloride, aliphatic amine and H-acid mono sodium salt. Their structures were identified by 1H NMR, Infrared Spectrum (IR) and Elementary Analysis (EA). Their critical micelle concentrations (CMC) in aqueous solutions at 25 °C were determined by a steady-state fluorescence probe method and a surface-tension method. With the increasing length of the carbon chain, the value of their CMCs and surface tensions under CMC (γ CMC) initially decreased and then reached a minimum (respectively 2.63 × 10−5 mol L−1 and 28.29 mN m−1) when the carbon number was 10. The CMC and γ CMC then increased when the carbon number was increased to 12. The results showed that, compared with sodium dodecyl benzene sulfonate (SDBS), such kinds of surfactants have much lower surface adsorption amounts and greater molecular areas on the aqueous surface.
Zhiyong HuEmail:
  相似文献   

20.
A series of new cationic surfactants, bis-quaternary ammonium salts and tris-ammonium salts, were prepared from N,N-dimethyldodecylamine and a product of the reaction of epichlorohydrin with ethyl-, propyl-, butyl-, pentyl-, hexyl-, and octylamine (in the xase of bis-ammonium salts) or the hydrochloride of diethyl-, dipropyl-, dibutyl-, or dihexylamine (in the case of tris-ammonium salts). The obtained multiple salts were examined with respect to their surface-active properties: Critical micelle concentrations (CMC), effectiveness of surface tension reductions (γCMC), and adsorption efficiencies (pC20) were measured. All these surfactants showed good water solubility and low CMC of more than one order of magnitude lower than those of corresponding monoalkylammonium salts. They also showed good foaming properties, but worse wetting capability. The obtained multiple salts showed excellent antielectrostatic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号