首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a review of type-2 fuzzy logic applications in pattern recognition, classification and clustering problems is presented. Recently, type-2 fuzzy logic has gained popularity in a wide range of applications due to its ability to handle higher degrees of uncertainty. In particular, there have been recent applications of type-2 fuzzy logic in the fields of pattern recognition, classification and clustering, where it has helped improving results over type-1 fuzzy logic. In this paper a concise and representative review of the most successful applications of type-2 fuzzy logic in these fields is presented. At the moment, most of the applications in this review use interval type-2 fuzzy logic, which is easier to handle and less computational expensive than generalized type-2 fuzzy logic.  相似文献   

2.
In this paper a review of type-2 fuzzy logic applications in pattern recognition, classification and clustering problems is presented. Recently, type-2 fuzzy logic has gained popularity in a wide range of applications due to its ability to handle higher degrees of uncertainty. In particular, there have been recent applications of type-2 fuzzy logic in the fields of pattern recognition, classification and clustering, where it has helped improving results over type-1 fuzzy logic. In this paper a concise and representative review of the most successful applications of type-2 fuzzy logic in these fields is presented.  相似文献   

3.
We describe in this paper a comparative study between fuzzy inference systems as methods of integration in modular neural networks for multimodal biometry. These methods of integration are based on techniques of type-1 fuzzy logic and type-2 fuzzy logic. Also, the fuzzy systems are optimized with simple genetic algorithms with the goal of having optimized versions of both types of fuzzy systems. First, we considered the use of type-1 fuzzy logic and later the approach with type-2 fuzzy logic. The fuzzy systems were developed using genetic algorithms to handle fuzzy inference systems with different membership functions, like the triangular, trapezoidal and Gaussian; since these algorithms can generate fuzzy systems automatically. Then the response integration of the modular neural network was tested with the optimized fuzzy systems of integration. The comparative study of the type-1 and type-2 fuzzy inference systems was made to observe the behavior of the two different integration methods for modular neural networks for multimodal biometry.  相似文献   

4.
Even though fuzzy logic is one of the most common methodologies for matching different kind of data sources, there is no study which uses this methodology for matching publication and patent data within a technology evaluation framework according to the authors’ best knowledge. In order to fill this gap and to demonstrate the usefulness of fuzzy logic in technology evaluation, this study proposes a novel technology evaluation framework based on an advanced/improved version of fuzzy logic, namely; interval type-2 fuzzy sets and systems (IT2FSSs). This framework uses patent data obtained from the European Patent Office (EPO) and publication data obtained from Web of Science/Knowledge (WoS/K) to evaluate technology groups with respect to their trendiness. Since it has been decided to target technology groups, patent and publication data sources are matched through the use IT2FSSs. The proposed framework enables us to make a strategic evaluation which directs considerations to use-inspired basic researches, hence achieving science-based technological improvements which are more beneficial for society. A European Classification System (ECLA) class – H01-Basic Electric Elements – is evaluated by means of the proposed framework in order to demonstrate how it works. The influence of the use of IT2FSSs is investigated by comparison with the results of its type-1 counterpart. This method shows that the use of type-2 fuzzy sets, i.e. handling more uncertainty, improves technology evaluation outcomes.  相似文献   

5.
Interval type-2 fuzzy inverse controller design in nonlinear IMC structure   总被引:1,自引:0,他引:1  
In the recent years it has been demonstrated that type-2 fuzzy logic systems are more effective in modeling and control of complex nonlinear systems compared to type-1 fuzzy logic systems. An inverse controller based on type-2 fuzzy model can be proposed since inverse model controllers provide an efficient way to control nonlinear processes. Even though various fuzzy inversion methods have been devised for type-1 fuzzy logic systems up to now, there does not exist any method for type-2 fuzzy logic systems. In this study, a systematic method has been proposed to form the inverse of the interval type-2 Takagi-Sugeno fuzzy model based on a pure analytical method. The calculation of inverse model is done based on simple manipulations of the antecedent and consequence parts of the fuzzy model. Moreover, the type-2 fuzzy model and its inverse as the primary controller are embedded into a nonlinear internal model control structure to provide an effective and robust control performance. Finally, the proposed control scheme has been implemented on an experimental pH neutralization process where the beneficial sides are shown clearly.  相似文献   

6.
This paper presents an indirect approach to interval type-2 fuzzy logic system modeling to forecaste the level of air pollutants. The type-2 fuzzy logic system permits us to model the uncertainties among rules and the parameters related to data analysis. In this paper, we propose an indirect method to create an interval type-2 fuzzy logic system from a historical data, where Footprint of Uncertainties of fuzzy sets are extracted by implementation of an interval type-2 FCM algorithm and based on an upper and lower value for the level of fuzziness m in FCM. Finally, the proposed model is applied for prediction of carbon monoxide concentration in Tehran air pollution. It is shown that the proposed type-2 fuzzy logic system is superior in comparison to type-1 fuzzy logic systems in terms of two performance indices.  相似文献   

7.
This paper presents a novel learning methodology based on a hybrid algorithm for interval type-2 fuzzy logic systems. Since only the back-propagation method has been proposed in the literature for the tuning of both the antecedent and the consequent parameters of type-2 fuzzy logic systems, a hybrid learning algorithm has been developed. The hybrid method uses a recursive orthogonal least-squares method for tuning the consequent parameters and the back-propagation method for tuning the antecedent parameters. Systems were tested for three types of inputs: (a) interval singleton, (b) interval type-1 non-singleton, and (c) interval type-2 non-singleton. Experiments were carried out on the application of hybrid interval type-2 fuzzy logic systems for prediction of the scale breaker entry temperature in a real hot strip mill for three different types of coil. The results proved the feasibility of the systems developed here for scale breaker entry temperature prediction. Comparison with type-1 fuzzy logic systems shows that hybrid learning interval type-2 fuzzy logic systems provide improved performance under the conditions tested.  相似文献   

8.
In this paper, a hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral is described. Interval type-2 fuzzy inference systems are used to perform edge detection and to calculate fuzzy densities for the decision process. A type-2 fuzzy system is used for edge detection, which is a pre-processing applied to the training data for better use in the neural networks. Another type-2 fuzzy system calculates the fuzzy densities necessary for the Sugeno integral, which is used to integrate results of the neural network modules. In this case, fuzzy logic is shown to be a good methodology to improve the results of a neural system facilitating the representation of the human perception. A comparative study is also made to verify that the proposed approach is better than existing approaches and improves the performance over type-1 fuzzy logic.  相似文献   

9.
This paper presents the optimization of a fuzzy edge detector based on the traditional Sobel technique combined with interval type-2 fuzzy logic. The goal of using interval type-2 fuzzy logic in edge detection methods is to provide them with the ability to handle uncertainty in processing real world images. However, the optimal design of fuzzy systems is a difficult task and for this reason the use of meta-heuristic optimization techniques is also considered in this paper. For the optimization of the fuzzy inference systems, the Cuckoo Search (CS) and Genetic Algorithms (GAs) are applied. Simulation results show that using an optimal interval type-2 fuzzy system in conjunction with the Sobel technique provides a powerful edge detection method that outperforms its type-1 counterparts and the pure original Sobel technique.  相似文献   

10.
Computing derivatives in interval type-2 fuzzy logic systems   总被引:1,自引:0,他引:1  
This paper makes type-2 fuzzy logic systems much more accessible to fuzzy logic system designers, because it provides mathematical formulas and computational flowcharts for computing the derivatives that are needed to implement steepest-descent parameter tuning algorithms for such systems. It explains why computing such derivatives is much more challenging than it is for a type-1 fuzzy logic system. It provides derivative calculations that are applicable to any kind of type-2 membership functions, since the calculations are performed without prespecifying the nature of those membership functions. Some calculations are then illustrated for specific type-2 membership functions.  相似文献   

11.
A method for designing optimal interval type-2 fuzzy logic controllers using evolutionary algorithms is presented in this paper. Interval type-2 fuzzy controllers can outperform conventional type-1 fuzzy controllers when the problem has a high degree of uncertainty. However, designing interval type-2 fuzzy controllers is more difficult because there are more parameters involved. In this paper, interval type-2 fuzzy systems are approximated with the average of two type-1 fuzzy systems, which has been shown to give good results in control if the type-1 fuzzy systems can be obtained appropriately. An evolutionary algorithm is applied to find the optimal interval type-2 fuzzy system as mentioned above. The human evolutionary model is applied for optimizing the interval type-2 fuzzy controller for a particular non-linear plant and results are compared against an optimal type-1 fuzzy controller. A comparative study of simulation results of the type-2 and type-1 fuzzy controllers, under different noise levels, is also presented. Simulation results show that interval type-2 fuzzy controllers obtained with the evolutionary algorithm outperform type-1 fuzzy controllers.  相似文献   

12.
Real-world systems present a variety of challenges to the modeller, not least of which is the problem of uncertainty inherent in their operation. In this research, an interval type-2 fuzzy model is applied to a real-world problem, the goal being to discover a suitable optimisation configuration to enable a search for an inventory plan using the model. To this end, a series of simulated annealing configurations and the interval type-2 fuzzy model were used to search for appropriate inventory plans for a large-scale real-world problem. A further set of tests were conducted in which the performance of the interval type-2 fuzzy model was compared with a corresponding type-1 fuzzy model. In these tests the results were inconclusive, though, as will be discussed there are many ways in which type-2 fuzzy logic can be exploited to demonstrate its advantages over a type-1 approach. To conclude, in this research we have shown that a combination of interval type-2 fuzzy logic and simulated annealing is a logical choice for inventory management modelling and inventory plan search, and propose that the benefits that a type-2 model offers, can make it preferable to a corresponding type-1 system.  相似文献   

13.
陈阳  王涛 《计算机工程与科学》2021,43(11):2027-2034
降型是广义二型模糊逻辑系统的核心模块。比较和分析了离散改进Karnik-Mendel(EKM)算法中求和运算和连续EKM(CEKM)算法中求积分运算,基于广义二型模糊集的α-平面表达理论,扩展EKM算法计算完成广义二型模糊逻辑系统质心降型。当计算广义二型模糊逻辑系统的质心降型集和质心解模糊化值时,用2个仿真实验说明了当适当增加广义二型模糊集主变量采样个数时,离散EKM算法的计算结果可以准确地逼近CEKM算法。  相似文献   

14.
In this paper, we propose a new method for dynamic parameter adaptation in particle swarm optimization (PSO). PSO is an optimization method inspired in social behavior, which has been applied to different optimization problems obtaining good results. In this paper, we propose an improvement to the convergence and diversity of the swarm in PSO using interval type-2 fuzzy logic. Simulation results show that the proposed approach improves the performance of PSO. A comparison of the proposed method using type-2 fuzzy logic with the original PSO approach, and with PSO using type-1 fuzzy logic for dynamic parameter adaptation is presented.  相似文献   

15.
Evolutionary algorithms are one of the most common choices reported in the literature for the tuning of fuzzy logic controllers based on either type-1 or type-2 fuzzy systems. An alternative to evolutionary algorithms is the simple tuning algorithm (STA-FLC), which is a methodology designed to improve the response of type-1 fuzzy logic controllers in a practical, intuitive and simple ways. This paper presents an extension of the simple tuning algorithm for fuzzy logic controllers based on the theory of type-2 fuzzy systems by using a parallel model implementation, it also includes a mechanism to calculate the feedback gain, new integral criteria parameters, and the effect of the AND/OR operator combinations on the fuzzy rules to improve the algorithm applicability and performance. All these improvements are demonstrated with experiments applied to different types of plants.  相似文献   

16.
基于FPSO的电力巡检机器人的广义二型模糊逻辑控制   总被引:1,自引:1,他引:0  
针对电力巡检机器人(Power-line inspection robot, PLIR)的平衡调节问题, 设计了广义二型模糊逻辑控制器(General type-2 fuzzy logic controller, GT2FLC); 针对GT2FLC中隶属函数参数难以确定的问题, 通过模糊粒子群(Fuzzy particle swarm optimization, FPSO)算法来优化隶属函数参数. 将GT2FLC的控制性能与区间二型模糊逻辑控制器(Interval type-2 fuzzy logic controller, IT2FLC)和一型模糊逻辑控制器(Type-1 fuzzy logic controller, T1FLC) 的控制性能进行对比. 除此之外, 还考虑了外部干扰对三种控制器控制效果的影响. 仿真结果表明, GT2FLC具有更好的性能和处理不确定性的能力.  相似文献   

17.
Systematic design of a stable type-2 fuzzy logic controller   总被引:1,自引:0,他引:1  
Stability is one of the more important aspects in the traditional knowledge of automatic control. Type-2 fuzzy logic is an emerging and promising area for achieving intelligent control (in this case, fuzzy control). In this work we use the fuzzy Lyapunov synthesis as proposed by Margaliot and Langholz [M. Margaliot, G. Langholz, New Approaches to Fuzzy Modeling and Control: Design and Analysis, World Scientific, Singapore, 2000] to build a Lyapunov stable type-1 fuzzy logic control system, and then we make an extension from a type-1 to a type-2 fuzzy logic control system, ensuring the stability on the control system and proving the robustness of the corresponding fuzzy controller.  相似文献   

18.
Conventional (type-1) fuzzy logic controllers have been commonly used in various power converter applications. Generally, in these controllers, the experience and knowledge of human experts are needed to decide parameters associated with the rule base and membership functions. The rule base and the membership function parameters may often mean different things to different experts. This may cause rule uncertainty problems. Consequently, the performance of the controlled system, which is controlled with type-1 fuzzy logic controller, is undesirably affected. In this study, a type-2 fuzzy logic controller is proposed for the control of buck and boost DC–DC converters. To examine and analysis the effects of the proposed controller on the system performance, both converters are also controlled using the PI controller and conventional fuzzy logic controller. The settling time, the overshoot, the steady state error and the transient response of the converters under the load and input voltage changes are used as the performance criteria for the evaluation of the controller performance. Simulation results show that buck and boost converters controlled by type-2 fuzzy logic controller have better performance than the buck and boost converters controlled by type-1 fuzzy logic controller and PI controller.  相似文献   

19.
广义二型模糊逻辑系统在近年来成为学术研究的热点问题,而降型是该系统中的核心模块。最近的研究证明了连续Nie-Tan(CNT)算法是计算区间二型模糊集质心的准确方法。发现了离散Nie-Tan(NT)算法中的求和运算和CNT算法中的求积分运算的内在联系,用2类算法完成基于广义二型模糊集α-平面表达理论的广义二型模糊逻辑系统质心降型。3个计算机仿真实验表明,当适当增加主变量采样点个数时,所提出的基于主变量采样的离散NT算法计算出的广义二型模糊逻辑系统质心降型集和解模糊化值结果可以精确地逼近基准的CNT算法,且采样离散NT算法的计算效率远远高于CNT算法的效率。  相似文献   

20.
Fuzzy logic controllers of type-1 and type-2 were implemented to deal with the high nonlinearities and uncertainties in operation of a reverse flow reactor (RFR) for catalytic oxidation of ventilation air methane (VAM). The results indicated that the fuzzy logic controller is distinctly superior to the traditional logic-based controller and works well under the conditions with high nonlinearities and uncertainties. Owing to the robustness of RFR and particular control aim of regulating bed temperature within a relatively broad range, a fuzzy logic controller of type-1 is sufficient to cope with the uncertainty brought by the extensive variation of VAM concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号