首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have cloned and characterized the white gene of Anopheles albimanus. Comparison of the deduced amino acid sequence of this white gene with its homologs from six species of Diptera show that the An. albimanus gene is most similar to the white gene of An. gambiae (92% identity). A spontaneous white-eyed mutant An. albimanus was caused by an approximately 10 kb insertion into a CT dinucleotide repeat region of intron 2 of the white locus. The flanks of this insertion are long (at least 400 bp), nearly perfect inverted terminal repeat sequences. This cloned white gene should be useful as a marker for germ line transformation of An. albimanus.  相似文献   

2.
The amino acid sequences of the amidinotransferases and the nucleotide sequences of their genes or cDNA from four Streptomyces species (seven genes) and from the kidneys of rat, pig, human and human pancreas were compared. The overall amino acid and nucleotide sequences of the prokaryotes and eukaryotes were very similar and further, three regions were identified that were highly identical. Evidence is presented that there is virtually zero chance that the overall and high identity regions of the amino acid sequence similarities and the overall nucleotide sequence similarities between Streptomyces and mammals represent random match. Both rat and lamprey amidinotransferases were able to use inosamine phosphate, the amidine group acceptor of Streptomyces. We have concluded that the structure and function of the amidinotransferases and their genes has been highly conserved through evolution from prokaryotes to eukaryotes. The evolution has occurred with: (1) a high degree of retention of nucleotide and amino acid sequences; (2) a high degree of retention of the primitive Streptomyces guanine + cytosine (G + C) third codon position composition in certain high identity regions of the eukaryote cDNA; (3) a decrease in the specificities for the amidine group acceptors; and (4) most of the mutations silent in the regions suggested to code for active sites in the enzymes.  相似文献   

3.
The element pSAM2 from Streptomyces ambofaciens integrates into the chromosome through site-specific recombination between the element (attP) and the chromosomal (attB) sites. These regions share an identity segment of 58bp extending from the anti-codon loop through the 3' end of a tRNA(Pro) gene. To facilitate the study of the attB site, the int and xis genes, expressed from an inducible promoter, and attP from pSAM2 were cloned on plasmids in Escherichia coil. Compatible plasmids carrying the different attB regions to be tested were introduced in these E. coli strains. Under these conditions, Int alone could promote site-specific integration; Int and Xis were both required for site-specific excision. This experimental system was used to study the sequences required in attB for efficient site-specific recombination. A 26 bp sequence, centred on the anti-codon loop region and not completely included in the identity segment, retained all the functionality of attB; shorter sequences allowed integration with lower efficiencies. By comparing the 26-bp-long attB with attP, according to the Lambda model, we propose that B and B', C and C' core-type Int binding sites consist of 9 bp imperfect inverted repeats separated by a 5 bp overlap region.  相似文献   

4.
Using chromosomal DNA from Kluyveromyces lactis as template and oligodeoxynucleotides designed from conserved regions of various G protein alpha subunits we were able to amplify by the polymerase chain reaction two products of approximately 0.5 kb (P-1) and 0.8 kb (P-2). Sequencing showed that these two fragments share high homology with genes coding for the G alpha subunits from different sources. Using the P-1 fragment as a probe we screened a genomic library from K. lactis and we cloned a gene (KlGPA2) whose deduced amino acid sequence showed, depending on the exact alignment, 62% similarity and 38% identity with Gpa1p and 76% similarity and 63% identity with Gpa2p, the G protein alpha subunits from Saccharomyces cerevisiae. KlGPA2 is a single-copy gene and its disruption rendered viable cells with significantly reduced cAMP level, indicating that this G alpha subunit may be involved in regulating the adenylyl cyclase activity, rather than participating in the mating pheromone response pathway. KlGpa2p shares some structural similarities with members of the mammalian G alpha s family (stimulatory of adenylyl cyclase) including the absence in its N-terminus of a myristoyl-modification sequence.  相似文献   

5.
Respiratory syncytial virus (RSV) infects humans and animals including ruminants. Among the 10 genes coded for in the viral genome, the putative attachment glycoprotein G gene has been the most variable among strains. Human RSV have been divided to two subgroups based on immunological and base sequence data on the attachment glycoprotein G and its gene, respectively. It has been suggested that similar antigenic diversity also exists among bovine RSV (BRSV) isolates. In this study, we report on the cloning and sequencing of the G glycoprotein from an ovine RSV (ORSV) strain originally isolated from a naturally infected sheep with rhinitis. This ORSV G glycoprotein gene had greater identity to the BRSV G gene than to the human RSV G gene. ORSV G gene and its encoded protein shared 70 and 62% nucleotide and amino acid identity to the equivalent gene and encoded protein, respectively, of BRSV but, in contrast, only 50-55% and 21-29% identity, respectively, to equivalent sequences of the HRSV strains. The relationship of the ORSV to other RSV subgroups and the possibility that ORSV could be a subgroup of the ruminant RSV is discussed.  相似文献   

6.
7.
Isocitrate dehydrogenase from an extremely thermophilic bacterium, Thermus aquaticus YT1, was purified to homogeneity, and the gene was cloned by using a degenerate oligonucleotide probe based on the N-terminal sequence. The gene consisted of a single open reading frame of 1,278 bp preceded by a Shine-Dalgarno ribosome binding site, and a terminator-like sequence was detected downstream of the open reading frame. The G+C content of the coding region was 65%, and that of the third nucleotide of the codons was 93%. The amino acid sequence of the enzyme showed a relatively low level of similarity to the counterpart from T. thermophilus (35% identity) but showed higher levels of similarity (54 to 69% identity) to the other bacterial counterparts so far reported, including those from Escherichia coli, Bacillus subtilis, Vibrio sp., and Anabaena sp. The cloned gene was highly expressed in E. coli and easily purified to homogeneity by heat treatment (70 degrees C, 30 min) and DEAE column chromatography to yield approximately 10 mg of protein from 1 g of wet cells. The recombinant enzyme showed high thermostability and almost the same heat denaturation profile as the intact enzyme purified from the thermophile cells, implying that the recombinant protein has the same structure as the intact one.  相似文献   

8.
ccr encoding crotonyl coenzyme A (CoA) reductase (CCR), which catalyzes the conversion of crotonyl-CoA to butyryl-CoA in the presence of NADPH, was previously cloned from Streptomyces collinus. We now report that a complete open reading frame, designated meaA, is located downstream from ccr. The predicted gene product showed 35% identity with methylmalonyl-CoA mutases from various sources. In addition, the predicted amino acid sequences of S. collinus ccr and meaA exhibit strong similarity to that of adhA (43% identity), a putative alcohol dehydrogenase gene, and meaA (62% identity) of Methylobacterium extorquens, respectively. Both adhA and meaA are involved in the assimilation of C1 and C2 compounds in an unknown pathway in the isocitrate lyase (ICL)-negative Methylobacterium. We have demonstrated that S. collinus can grow with acetate as its sole carbon source even though there is no detectable ICL, suggesting that in this organism ccr and meaA may also be involved in a pathway for the assimilation of C2 compounds. Previous studies with streptomycetes provided a precedent for a pathway that initiates with the condensation of two acetyl-CoA molecules to form butyryl-CoA, which is then transformed to succinyl-CoA with two separate CoB12-mediated rearrangements and a series of oxidations. The biological functions of ccr and meaA in this process were investigated by gene disruption. A ccr-blocked mutant showed no detectable crotonyl-CoA reductase activity and, compared to the wild-type strain, exhibited dramatically reduced growth when acetate was the sole carbon source. An meaA-blocked mutant also exhibited reduced growth on acetate. However, both methylmalonyl-CoA mutase and isobutyryl-CoA mutase, which catalyze the two CoB12-dependent rearrangements in this proposed pathway, were shown to be present in the meaA-blocked mutant. These results suggested that both ccr and meaA are involved in a novel pathway for the growth of S. collinus when acetate is its sole carbon source.  相似文献   

9.
10.
11.
Infection with Helicobacter hepaticus causes chronic active hepatitis in certain strains of mice and is associated with hepatocellular carcinoma in A/JCr mice. Like the gastric helicobacters, H. pylori and H. mustelae, H. hepaticus possesses a high level of urease activity. However, the H. hepaticus urease structural gene sequences have not been previously determined, and the role of the urease enzyme in colonization and in pathogenesis is not known. PCR was used to amplify a portion of the urease structural genes from H. hepaticus genomic DNA. Amplified DNA fragments were cloned, and the nucleotide sequence was determined. The deduced amino acid sequence of the partial H. hepaticus ureA gene product was found to exhibit 60% identity and 75% similarity to the predicted H. pylori UreA. The deduced amino acid sequence of a partial H. hepaticus ureB gene product exhibited 75% identity and 87% similarity to the predicted H. pylori UreB. Diversity among H. hepaticus isolates was evaluated by means of a restriction fragment length polymorphism (RFLP) assay. The 1.6-kb fragments within the ureAB open reading frames, amplified from 11 independent isolates, were digested with the restriction endonuclease HhaI. Three distinct RFLP patterns were observed. Identical RFLP profiles were noted in sequential isolates of one strain of H. hepaticus during an 18 month in vivo colonization study, suggesting that the urease genes of H. hepaticus are stable. The urease genes among H. hepaticus strains were also well conserved, showing 98.8 to 99% nucleotide sequence identity among three isolates analyzed. These findings indicate that H. hepaticus has urease structural genes which are homologous to those of the gastric Helicobacter species and that these gene sequences can be used in a PCR and RFLP assay for diagnosis of this important murine pathogen.  相似文献   

12.
The actinomycin synthetases ACMS I, II, and III catalyze the assembly of the acyl peptide lactone precursor of actinomycin by a nonribosomal mechanism. We have cloned the genes of ACMS I (acmA) and ACMS II (acmB) by hybridization screening of a cosmid library of Streptomyces chrysomallus DNA with synthetic oligonucleotides derived from peptide sequences of the two enzymes. Their genes were found to be closely linked and are arranged in opposite orientations. Hybridization mapping and partial sequence analyses indicate that the gene of an additional peptide synthetase, most likely the gene of ACMS III (acmC), is located immediately downstream of acmB in the same orientation. The protein sequence of ACMS II, deduced from acmB, shows that the enzyme contains two amino acid activation domains, which are characteristic of peptide synthetases, and an additional epimerization domain. Heterologous expression of acmB from the mel promoter of plasmid PIJ702 in Streptomyces lividans yielded a functional 280-kDa peptide synthetase which activates threonine and valine as enzyme-bound thioesters. It also catalyzes the dipeptide formation of threonyl-L-valine, which is epimerized to threonyl-D-valine. Both of these dipeptides are enzyme bound as thioesters. This catalytic activity is identical to the in vitro activity of ACMS II from S. chrysomallus.  相似文献   

13.
The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme. The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa. An identical epoxide hydrolase gene was cloned from chromosomal DNA of the closely related strain A. radiobacter CFZ11. The recombinant epoxide hydrolase was expressed up to 40% of the total cellular protein content in Escherichia coli BL21(DE3) and the purified enzyme had a kcat of 21 s-1 with epichlorohydrin. Amino acid sequence similarity of the epoxide hydrolase with eukaryotic epoxide hydrolases, haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, and bromoperoxidase A2 from Streptomyces aureofaciens indicated that it belonged to the alpha/beta-hydrolase fold family. This conclusion was supported by secondary structure predictions and analysis of the secondary structure with circular dichroism spectroscopy. The catalytic triad residues of epoxide hydrolase are proposed to be Asp107, His275, and Asp246. Replacement of these residues to Ala/Glu, Arg/Gln, and Ala, respectively, resulted in a dramatic loss of activity for epichlorohydrin. The reaction mechanism of epoxide hydrolase proceeds via a covalently bound ester intermediate, as was shown by single turnover experiments with the His275 --> Arg mutant of epoxide hydrolase in which the ester intermediate could be trapped.  相似文献   

14.
A novel chitinase gene of tobacco was isolated and characterized by DNA sequence analysis of a genomic clone and a cDNA clone. Comparative sequence analysis of both clones showed an identity of 94%. The proteins encoded by these sequences do not correspond to any of the previously characterized plant chitinases of classes I-IV and are designated as class V chitinases. Comparison of the chitinase class V peptide sequence with sequences in the Swiss Protein databank revealed significant sequence similarity with bacterial exo-chitinases from Bacillus circulans, Serratia marcescens and Streptomyces plicatus. It was demonstrated that class V chitinase gene expression is induced after treatment of tobacco with different forms of stress, like TMV-infection, ethylene treatment, wounding or ultraviolet irradiation. Two related chitinase class V proteins of 41 and 43 kDa were purified from Samsun NN tobacco leaves inoculated with tobacco mosaic virus. The proteins were purified by Chelating Superose chromatography and gel filtration. In vitro assays demonstrated that class V chitinases have endo-chitinase activity and exhibit antifungal activity toward Trichoderma viride and Alternaria radicina. In addition, it was shown that class V chitinase acts synergistically with tobacco class I beta-1,3-glucanase against Fusarium solani germlings.  相似文献   

15.
We cloned a 9.4-kb DNA fragment from Streptomyces scabies ATCC 41973 that allows the nonpathogen Streptomyces lividans 66 TK24 to necrotize and colonize potato tuber slices and produce scab-like symptoms on potato minitubers. Deletion analysis demonstrated that activity was conferred by a 1.6-kb DNA region. Sequence analysis of a 2.4-kb DNA fragment spanning the DNA region necessary for activity revealed three open reading frames (ORFs). The deduced amino acid sequence of ORF1, designated ORFtnp, showed high levels of identity with the first 233 amino acids of the putative transposases of the IS1164 elements from Rhodococcus rhodochrous (71%) and Mycobacterium bovis (68%), members of the Staphylococcus aureus IS256 family of transposases. No significant homologies to ORF2 and ORF3 were found in the nucleic acid and protein databases. ORFtnp is located 5' of ORF3. ORF2 is incomplete and is located 3' of ORF3. Subcloning of the individual ORFs demonstrated that ORF3, designated nec1, is sufficient for necrotizing activity in S. lividans 66 TK24. S. lividans 66 TK24 expressing nec1 does not produce thaxtomin A but produces an unidentified extracellular water-soluble compound that causes necrosis on potato tuber discs. The G+C content of nec1 suggests that it has moved horizontally from another genus. Southern analysis of ORFtnp and nec1 demonstrate that these genes are physically linked in Streptomyces strains, including S. scabies and Streptomyces acidiscabies strains, that are pathogenic on potato and that produce the phytotoxin thaxtomin A. These data suggest that nec1 may have been mobilized into S. scabies through a transposition event mediated by ORFtnp.  相似文献   

16.
The nucleotide sequence of a BglII-PstI DNA fragment that contains the cloned aphVIII gene from the Streptomyces rimosus P3 strain, the producer of oxytetracycline, was determined. It was established that the aph gene encodes neomycin phosphotransferase that differs by substrate specificity from neomycin phosphotransferases encoded by aph genes in producers of aminoglycoside antibiotics and clinical bacterial strains. The gene was shown to be 777 bp in length with the mean GC content equal to 67%. The amino acid sequence possesses all highly conserved regions typical for aminoglycoside phosphotransferases; however, this sequence contained several amino acid substitutions that have been detected for the first time, including those in the domain responsible for the association with antibiotics.  相似文献   

17.
The analysis of host immunity to mycobacteria and the development of discriminatory diagnostic reagents relies on the characterization of conserved and species-specific mycobacterial antigens. In this report, we have characterized the Mycobacterium avium homolog of the highly immunogenic M. leprae 35-kDa protein. The genes encoding these two proteins were well conserved, having 82% DNA identity and 90% identity at the amino acid level. Moreover both proteins, purified from the fast-growing host M. smegmatis, formed multimeric complexes of around 1000 kDa in size and were antigenically related as assessed through their recognition by antibodies and T cells from M. leprae-infected individuals. The 35-kDa protein exhibited significant sequence identity with proteins from Streptomyces griseus and the cyanobacterium Synechoccocus sp. strain PCC 7942 that are up-regulated under conditions of nutrient deprivation. The 67% amino acid identity between the M. avium 35-kDa protein and SrpI of Synechoccocus was spread across the sequences of both proteins, while the homologous regions of the 35-kDa protein and the P3 sporulation protein of S. griseus were interrupted in the P3 protein by a divergent central region. Assessment by PCR demonstrated that the gene encoding the M. avium 35-kDa protein was present in all 30 M. avium clinical isolates tested but absent from M. intracellulare, M. tuberculosis, or M. bovis BCG. Mice infected with M. avium, but not M. bovis BCG, developed specific immunoglobulin G antibodies to the 35-kDa protein, consistent with the observation that tuberculosis patients do not recognize the antigen. Strong delayed-type hypersensitivity was elicited by the protein in guinea pigs sensitized with M. avium.  相似文献   

18.
The ponA gene encoding penicillin-binding protein 1 (PBP 1) from Neisseria gonorrhoeae was cloned by a reverse genetic approach. PBP 1 was purified from solubilized membranes of penicillin-susceptible strain FA19 by covalent ampicillin affinity chromatography and used to obtain an NH2-terminal amino acid sequence. A degenerate oligonucleotide based on this protein sequence and a highly degenerate oligonucleotide based on a conserved amino acid motif found in all class A high-molecular-mass PBPs were used to isolate the PBP 1 gene (ponA). The ponA gene encodes a protein containing all of the conserved sequence motifs found in class A PBPs, and expression of the gene in Escherichia coli resulted in the appearance of a new PBP that comigrated with PBP 1 purified from N. gonorrhoeae. A comparison of the gonococcal ponA gene to its homolog isolated from Neisseria meningitidis revealed a high degree of identity between the two gene products, with the greatest variability found at the carboxy terminus of the two deduced PBP 1 protein sequences.  相似文献   

19.
An alkali-sensitive mutant, 18224, of the alkaliphilic Bacillus sp. strain C-125 was characterized. The nucleotide sequence of the PvuI-NlaIV DNA fragment that recovers the alkaliphily of 18224 has been cloned from the mutant and sequenced. Comparison of the nucleotide sequences of the corresponding regions found a G to A substitution in the mutant. The mutation resulted in an amino acid substitution from 82Gly to Glu of the putative ORF3 product, which consisted a gene cluster of at least four tandemly located open reading frames. The ORF3 product was deduced to be an 112 amino acid polypeptide with hydrophobic properties, which was expressed using an in vitro translation system.  相似文献   

20.
The gene coding for copalyl diphosphate synthase (CPS), which represents the first gene of the gibberellin pathway, was isolated from the rice pathogen Gibberella fujikuroi. This fungus is used commercially for the production of gibberellic acid and related gibberellins. CPS is a terpene cyclase which catalyzes the first specific step of the gibberellin (GA) pathway as it branches off from the general isoprenoid (biosynthetic) pathway at geranylgeranyl disphosphate (GGDP). A cDNA fragment of the cps gene from the fungus G. fujikuroi was amplified by RT-PCR using oligonucleotides based on amino-acid sequences which were conserved between the plant CPSs and the bifunctional CPS/KS of the fungus Phaeosphaeria sp. L487. A 588-bp fragment obtained with nested PCR was used to isolate the corresponding genomic clone of the cps gene from the wild-type lambda-library. This gene consists of three exons and two introns. The three exons are 2877 bp long and encode 959 amino-acid residues. The protein shares 48% identity with the bifunctional Phaeosphaeria sp. L487 FCPS and between 16% and 18% identity to the corresponding plant CPSs. Expression of the G. fujikuroi cps gene is strongly enhanced under conditions optimized for gibberellin biosynthesis and is reduced when high amounts of ammonium are present in the medium. Gene disruption, followed by gibberellin assays and Southern-blot analysis of the transformants, demonstrated clearly that the cloned gene has the expected function in the biosynthesis of fungal gibberellins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号