首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Significantly enhanced nonenzymatic glycosylation of hemoglobin, plasma, and erythrocyte membrane proteins was demonstrated following storage of whole blood in the liquid state under conventional blood bank conditions. Among the blood components studied, the proteins of the erythrocyte membrane were mainly involved, although the levels of glycosylated hemoglobin and plasma proteins were also significantly increased. In contrast to the nonenzymatic glycosylation observed in vivo in patients with diabetes, the in vitro process is less intensive and most probably results in less functional alteration.  相似文献   

2.
Intracellular sugars are more reactive glycosylating agents than glucose. In vitro nonezymatic glycosylation of basic fibroblast growth factor (bFGF) by fructose, glucose-6-phosphate (G6P), or glyceraldehyde-3-phosphate (G3P) reduced high affinity heparin-binding activity of recombinant bFGF by 73, 77, and 89%, respectively. Mitogenic activity was reduced 40, 50, and 90%. To investigate the effects of bFGF glycosylation in GM7373 endothelial cells, we first demonstrated that GLUT-1 transporters were not downregulated by increased glucose concentration. In 30 mM glucose, the rate of glucose transport increased 11.6-fold, and the intracellular glucose concentration increased sixfold at 24 h and fivefold at 168 h. The level of total cytosolic protein modified by advanced glycosylation end-products (AGEs) was increased 13.8-fold at 168 h. Under these conditions, mitogenic activity of endothelial cell cytosol was reduced 70%. Anti-bFGF antibody completely neutralized the mitogenic activity at both 5 and 30 nM glucose, demonstrating that all the mitogenic activity was due to bFGF. Immunoblotting and ELISA showed that 30 mM glucose did not decrease detectable bFGF protein, suggesting that the marked decrease in bFGF mitogenic activity resulted from posttranslational modification of bFGF induced by elevated glucose concentration. Cytosolic AGE-bFGF was increased 6.1-fold at 168 h. These data are consistent with the hypothesis that nonenzymatic glycosylation of intracellular protein alters vascular cell function.  相似文献   

3.
Most plasma proteins are glycoproteins, that is, they possess oligosaccharide chains attached to the polypeptide core. These oligosaccharides have important structural and functional roles; they serve as recognition markers (ligands), especially for lectin receptors, thus modulating the glycoprotein interactions. Protein glycosylation is a posttranslational event which depends on the proteic core and biosynthetic cell type and results in a set of microheterogeneous forms (glycoforms) of an individual glycoprotein. Under pathological conditions an alteration of the glycosylation pattern of plasma glycoproteins occurs. So, degalactosylated IgG and IgA1 detected in rheumatoid arthritis and IgA nephropathy, respectively, are implicated in the pathogenic mechanisms. Alteration of transferrin, alpha 1-acid glycoprotein and alpha-fetoprotein glycosylation (reduced sialylation and increased branching of oligosaccharide chains) occurs in liver diseases. In inflammations and infections the alteration is dependent on the disease studied, while increased sialylation and fucosylation of acute-phase proteins are detected in cancer sera. Lectin-based methods have been developed for clinical purposes, in order to improve the diagnosis, prognosis evaluation, or treatment monitoring.  相似文献   

4.
Woodchucks chronically infected with woodchuck hepatitis virus (WHV) are a valuable model for human hepatitis B virus (HBV) in studies of pathogenesis, immunity, and antiviral therapy. For this reason, substantial efforts to characterize both the similarities and the differences between HBV and WHV are being made. The structure of the WHV surface proteins (WHs proteins) has not yet been adequately elucidated. The bands that would be expected for glycosylated and nonglycosylated small (S) WHs protein are found by sodium dodecyl sulfate gel electrophoresis of purified WHs protein, but the bands corresponding to the middle (M) and large (L) WHs proteins of HBV are not seen at the expected sizes, even though the sequences of the WHV and HBV surface protein genes are 60% homologous. By amino-terminal sequencing we have identified two bands at 41 and 45 kDa as the MWHs proteins, 8 kDa larger than expected. We have also confirmed that two bands at 24 and 27 kDa are SWHs proteins. A protein of 49 kDa was blocked at the N terminus, which using immunoblotting with an antiserum against WHV pre-S1 (positions 126 to 146) was identified, together with a part of the 45-kDa protein, as glycosylated and nonglycosylated LWHs protein of the expected size. Sialidase and O-glycosidase digestion showed that the larger size of MWHs protein results from the presence of O glycoside groups which are probably in the pre-S2 domain of MWHs protein. Since the pre-S2 domains of HBV and WHV have similar numbers of potential O glycosylation sites, it appears to be likely that the glycosyltransferases act differently on the viral proteins in woodchucks and humans.  相似文献   

5.
Up to four morphologically distinct types of cross-link are found between the stereocilia in the hair bundles of avian hair cells. These links are involved in mechanotransduction, force transmission across the bundle, and maintenance of hair bundle structure. They appear to be specialisations of the cell coat, but very little is known about their molecular composition. Chick inner ear tissues were therefore screened with a number of different lectins to find markers for specialisations of the hair bundle surface. One lectin, peanut agglutinin (PNA), which recognises the dissacharide Gal beta 1-3GalNAc, was found to be a fairly selective marker for vestibular hair bundles, but it does not stain the stereocilia of auditory hair cells. The staining patterns observed with PNA in the vestibular system closely resemble those seen with a monoclonal antibody (mab) directed against a 275 kD component of the hair cell's apical surface known as the hair-cell antigen (HCA). However, unlike PNA, the mab recognises both vestibular and auditory hair cells. A detailed comparison of the fluorescence staining patterns observed with PNA and the anti-HCA mab indicates that binding sites for both ligands spatially codistribute on the surface of vestibular hair cells. The lectin and the anti-HCA mab binding sites are both sensitive to trypsin treatment, and, with sections of the vestibular system, PNA pretreatment blocks subsequent anti-HCA mab staining. Immunoelectron microscopy of vestibular hair bundles shows that PNA and the anti-HCA mab both label a type of cross-link known as the shaft connector. This link type is present on both auditory and vestibular hair bundles but reacts with PNA only in the vestibular system. The lectin jacalin, which has greater specificity for Gal beta 1-3GalNAc than does PNA, also only labels vestibular and not auditory hair bundles. Although terminal sialic acid residues can block both PNA and jacalin binding, neuraminidase treatment does not unmask cryptic binding sites for these lectins on auditory hair cells but does reveal PNA and jacalin staining at a number of other locations in the inner ear. The results obtained with the lectins PNA and jacalin indicate that either the HCA or other components of the shaft links are differentially glycosylated in the vestibular and auditory epithelia of the bird. The functional significance for such a difference in glycosylation remains to be determined, but auditory and vestibular hair cells operate over different frequency ranges, and variations in glycosylation might confer different micromechanical properties on the hair bundles in these two systems.  相似文献   

6.
Stability of azosemide after incubation in various pH solutions, human plasma, human gastric juice, and rat liver homogenates, metabolism of azosemide after incubation in 9000 g supernatant fraction of various rat tissue homogenates in the presence of NADPH, tissue distribution of azosemide and M1 after intravenous (i.v.) administration of azosemide, 20 mg kg-1, to rats, and blood partition of azosemide between plasma and blood cells from rabbit blood were studied. Azosemide seemed to be stable for up to 48 h incubation in various pH solutions ranging from two to 13 at an azosemide concentration of 10 micrograms mL-1; more than 93.4% of azosemide was recovered, and a metabolite of azosemide, M1, was not detected. However, the drug was unstable in pH1 solution: 75.8% of azosemide was recovered and 2.16 micrograms mL-1 of M1 (expressed in terms of azosemide) was formed after 48 h incubation in pH 1 solution at an azosemide concentration of 10 micrograms mL-1. Azosemide was stable in both human plasma and rat liver homogenates for up to 24 h incubation at an azosemide concentration of 1 microgram mL-1, and in human gastric juice for up to 4 h incubation at an azosemide concentration of 10 micrograms mL-1. However, all rat tissues studied had metabolic activity for azosemide in the presence of NADPH, with heart having a considerable metabolic activity: approximately 22% of azosemide disappeared and 9.32 micrograms of M1 was formed per gram of heart (expressed in terms of azosemide) after 30 min incubation of 50 micrograms of azosemide in 9000 g supernatant fraction of heart homogenates. The tissue to plasma ratios of azosemide (T/P) were greater than unity only in the liver (1.26) and kidney (1.74); however, M1 showed high affinity for all tissues studied except the brain and spleen when each tissue was collected at 30 min after i.v. administration of azosemide to rats. The equilibrium plasma to blood cell concentration ratios of azosemide were independent of azosemide blood concentrations: the values were 2.78-4.25 at azosemide blood concentrations of 1, 10, and 20 micrograms mL-1 in three rabbits. There was negligible 'blood storage effect' of azosemide, especially at low blood concentrations of azosemide, such as 1 and 10 micrograms mL-1.  相似文献   

7.
Advanced glycosylation end products (AGEs) accumulate on long-lived extracellular matrix proteins and have been implicated in the micro- and macrovascular complications of diabetes mellitus. Within the arterial wall, AGE-modified proteins increase vascular permeability, inactivate nitric oxide activity, and induce the release of growth-promoting cytokines. Recently developed anti-AGE antibodies were used in an immunohistochemical analysis of coronary arteries obtained from type II diabetic and nondiabetic patients. High levels of AGE reactivity were observed within the atherosclerotic plaque present in vessels from selected patients with diabetes. Considered together with the pathological effects of AGEs on vascular wall homeostasis, these data support the role of advanced glycosylation in the rapidly progressive atherosclerosis associated with diabetes mellitus.  相似文献   

8.
Uncoupling protein, originally described in the inner mitochondrial membrane of brown adipose tissue, permits the oxidation of fuels without the generation of adenosine triphosphate (ATP). Closely related proteins have now been found in many other tissues and shown to be regulated by thyroid hormones and dietary factors. These uncoupling proteins may play a significant role in energy expenditure, with implications for the development of human obesity.  相似文献   

9.
Vitamin D metabolite-binding proteins in human tissue   总被引:1,自引:0,他引:1  
Serum and post-microsomal supernatants of human lymphocyte, erythrocyte, skeletal muscle and parathyroid adenoma homogenates were examined for specific binding of 25-hydroxycholecalciferol (25-OHD3) and 1, 25-dihydroxycholecalciferol (1,25-(OH)2D3). Muscle, lymphocytes and parathyroid adenomata extracts contained a 6-S 25-OHD3-binding protein which was not found in erythrocyte extracts, and which was distinct from the smaller serum transport alpha-globulin. A cathodal, 1, 25-(OH)2D3-binding protein, which sedimented at 3-4 S was also detected in parathyroid tissue. These observations suggest the possibility of direct physiologic interaction between vitamin D metabolites and nucleated human tissues other than intestine and bone.  相似文献   

10.
The glomerular basement membrane (GBM) is damaged in diabetes through complex mechanisms that are not fully understood. Prominent among them is nonenzymatic protein glycation leading to the formation of so-called advanced glycation end products (AGEs). We examined the effects of in vitro glycation of intact collagen type IV in bovine lens capsule (LBM) and kidney glomerular (GBM) basement membranes on their susceptibility to matrix metalloproteinases, using stromelysin 1 (MMP-3) and gelatinase B (MMP-9). Sites of cleavage of unmodified LBM collagen were located in the triple helical region. In vitro glycation by glucose severely inhibited the release of soluble collagen cleavage peptides by MMP-3 and MMP-9. The distribution of AGEs within the three domains of collagen IV (7S, triple helical, and noncollagenous NC1) were compared for LBM glycation using AGE fluorescence, pentosidine quantitation, and immunoreactivity towards anti-AGE antibodies that recognize the AGE carboxymethyllysine (CML). Marked asymmetry was observed, with the flexible triple helical domain having the most pentosidine and fluorescent AGEs but the least CML. The in vivo relevance of these findings is supported by preliminary studies of AGE distribution in renal basement membrane (RBM) collagen IV domains from human kidneys of two insulin-dependent diabetics and one normal subject. Pentosidine and fluorescent AGE distributions of diabetic RBM were similar to LBM, but the CML AGE in diabetic kidney was less in the triple helical domain than in NC1. Our results support the hypothesis that nonenzymatic glycation of collagen IV contributes to the thickening of basement membranes, a hallmark of diabetic nephropathy.  相似文献   

11.
The aim of the present study was to evaluate renal and liver distribution of two monoclonal immunoglobulin light chains. The chains were purified individually from the urine of patients with multiple myeloma and characterized as lambda light chains with a molecular mass of 28 kDa. They were named BJg (high amount of galactose residues exposed) and BJs (sialic acid residues exposed) on the basis of carbohydrate content. A scintigraphic study was performed on male Wistar rats weighing 250 g for 60 min after i.v. administration of 1 mg of each protein (7.4 MBq), as the intact proteins and also after carbohydrate oxidation. Images were obtained with a Siemens gamma camera with a high-resolution collimator and processed with a MicroDelta system. Hepatic and renal distribution were established and are reported as percent of injected dose. Liver uptake of BJg was significantly higher than liver uptake of BJs (94.3 vs 81.4%) (P < 0.05). This contributed to its greater removal from the intravascular compartment, and consequently lower kidney accumulation of BJg in comparison to BJs (5.7 vs 18.6%) (P < 0.05). After carbohydrate oxidation, there was a decrease in hepatic accumulation of both proteins and consequently a higher renal overload. The tissue distribution of periodate-treated BJg was similar to that of native BJs: 82.7 vs 81.4% in the liver and 17.3 vs 18.6% in the kidneys. These observations indicate the important role of sugar residues of Bence Jones proteins for their recognition by specific membrane receptors, which leads to differential tissue accumulation and possible toxicity.  相似文献   

12.
We have molecularly analyzed three genes, sqv-3, sqv-7, and sqv-8, that are required for wild-type vulval invagination in Caenorhabditis elegans. The predicted SQV-8 protein is similar in sequence to two mammalian beta(1,3)-glucuronyltransferases, one of which adds glucuronic acid to protein-linked galactose-beta(1, 4)-N-acetylglucosamine. SQV-3 is similar to a family of glycosyltransferases that includes vertebrate beta(1, 4)-galactosyltransferases, which create galactose-beta(1, 4)-N-acetylglucosamine linkages. One model is therefore that SQV-8 uses a SQV-3 product as a substrate. SQV-7 is similar to members of a family of nucleotide-sugar transporters. The sqv genes therefore are likely to encode components of a conserved glycosylation pathway that assembles a C. elegans carbohydrate moiety, the absence of which perturbs vulval invagination.  相似文献   

13.
There is increasing evidence that certain mRNAs are present in dendrites and can be translated there. The present study uses two strategies to evaluate whether dendrites also possess the machinery for protein glycosylation. First, precursor labeling techniques were used to conjunction with autoradiography to visualize glycosyltransferase activities that are characteristic of the rough endoplasmic reticulum (RER) (mannose) or the Golgi apparatus (GA) (galactose and fucose) in dendrites that had been separated from their cell bodies and in intact neurons treated with brefeldin A or low temperature. Second, immunocytochemical techniques were used to define the subcellular distribution of proteins that are considered markers of the RER (ribophorin I) and GA (p58, alpha-mannosidase II, galactosyltransferase, and TGN38/41). Autoradiographic analysis revealed that isolated dendrites incorporated sugar precursors in a tunicamycin-sensitive and protein synthesis-dependent manner. Moreover, when intact neurons were pulse-labeled with 3H-labeled sugars at low temperature or after treatment with brefeldin A, labeling was distributed over proximal and sometimes distal dendrites. Immunolabeling for RER markers was predominantly localized in cell bodies but extended for a considerable distance into dendrites of all neurons. Immunolabeling for GA markers was confined to the cell body in approximately 70% of the neurons, but in 30% of the neurons, the staining extended into proximal and middle dendrites. These results indicate that the machinery for glycosylation extends well into dendrites in many neurons.  相似文献   

14.
The effect of anemia on the lead content of blood, red cells, and tissue was studied in rats given oral lead, 54 mg/kg-day for 6 days. The 16 rats made anemic (hematocrit, 26%) by bleeding on days 1, 3, and 5 had significantly higher concentrations of lead in the kidney, liver, red cells, blood, and brain (but not in the bone marrow). Increases in blood lead in anemic subjects were correlated with the concentrations in red cells, kidney, and liver. The greater increase in the lead content of all tissues of the anemic rats is consistent with increased lead absorption in anemia and is considered relevant to the clinical coexistence of anemia and lead poisoning.  相似文献   

15.
16.
The biosynthesis, structures, and functions of O-glycosylation, as a complex posttranslational event, is reviewed and compared for the various types of O-glycans. Mucin-type O-glycosylation is initiated by tissue-specific addition of a GalNAc-residue to a serine or a threonine of the fully folded protein. This event is dependent on the primary, secondary, and tertiary structure of the glycoprotein. Further elongation and termination by specific transferases is highly regulated. We also describe some of the physical and biological properties that O-glycosylation confers on the protein to which the sugars are attached. These include providing the basis for rigid conformations and for protein stability. Clustering of O-glycans in Ser/Thr(/Pro)-rich domains allows glycan determinants such as sialyl Lewis X to be presented as multivalent ligands, essential for functional recognition. An additional level of regulation, imposed by exon shuffling and alternative splicing of mRNA, results in the expression of proteins that differ only by the presence or absence of Ser/Thr(/Pro)-rich domains. These domains may serve as protease-resistant spacers in cell surface glycoproteins. Further biological roles for O-glycosylation discussed include the role of isolated mucin-type O-glycans in recognition events (e.g., during fertilization and in the immune response) and in the modulation of the activity of enzymes and signaling molecules. In some cases, the O-linked oligosaccharides are necessary for glycoprotein expression and processing. In contrast to the more common mucin-type O-glycosylation, some specific types of O-glycosylation, such as the O-linked attachment of fucose and glucose, are sequon dependent. The reversible attachment of O-linked GlcNAc to cytoplasmic and nuclear proteins is thought to play a regulatory role in protein function. The recent development of novel technologies for glycan analysis promises to yield new insights in the factors that determine site occupancy, structure-function relationship, and the contribution of O-linked sugars to physiological and pathological processes. These include diseases where one or more of the O-glycan processing enzymes are aberrantly regulated or deficient, such as HEMPAS and cancer.  相似文献   

17.
Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue. Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure is more susceptible to surgical exposure of the tissue. During elevation of arterial perfusion pressure blood flow in the isolated tissue showed a transient increase and then almost returned to the level during normotension, indicating an elevated vascular resistance. Raising of venous pressure elicited vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous pressure and total ischemia appear to be elicited by different mechanisms.  相似文献   

18.
OBJECTIVE: To determine whether pituitary down-regulation after gonadotropin-releasing hormone analogue (GnRH-a) administration can be accurately predicted by transvaginal ultrasonographic measurement of endometrial thickness. DESIGN: Prospective study. SETTING: An IVF unit of an academic medical center. PATIENT(S): One hundred eighty-one patients undergoing 265 IVF-ET treatment cycles using GnRH-a in the long protocol. MAIN OUTCOME MEASURE(S): Serum concentrations of E2 were determined, and endometrial thickness was measured by transvaginal sonography. The accuracy of endometrial thickness for predicting pituitary down-regulation was calculated. RESULT(S): Pituitary down-regulation, defined as a serum E2 concentration of < or = 55 pg/mL, was achieved in 77% (204 of 265) of the cycles. An endometrial thickness of < or = 6 mm was found in 92.2% (188 of 204) of cycles in which down-regulation was achieved. An estradiol level of < or = 55 pg/mL was present in 95.9% (188 of 196) of cycles with endometrial thickness of < or = 6 mm. CONCLUSION(S): A state of relative hypoestrogenism after GnRH-a administration, indicative of pituitary down-regulation, can be predicted with a high degree of accuracy by ultrasonographic measurement of endometrial thickness. Thus, routine testing for serum E2 concentration may be safely omitted. This may allow further simplification of IVF protocols and increase both cost-effectiveness and patients' convenience.  相似文献   

19.
Residual glutaraldehyde (GA) in collagenous cardiovascular tissue prostheses after multiple saline rinses remains in the prostheses and accounts for adsorption and conjugation of a variety of plasma proteins. This may account for later beneficial or adverse effects. Human serum albumin (SA), gamma globulin (GG), and fibrinogen (FB) were iodinated with 125I using the iodogen-transfer technique. Bovine pericardium (PC) was fixed with 0.5% GA for 24 hr and rinsed to remove excess GA. Fresh and GA-fixed PC (FRPC, GAPC: 1 x 1 cm2), in triplicate, were incubated with 0.5-1.0 microCi of tracers in human, porcine, or bovine blood (2 ml) for a period of 0.5, 1, 2, and 3 hr and washed (5x) with saline. Maximum adsorbed proteins per unit weight of collagen (pmol/mg of PC, mean +/- SD) at 3 hr on FRPC and GAPC were quantified with a gamma counter. Fixed PC absorbed significantly more plasma proteins from blood than fresh PC. These conjugated plasma proteins are tightly bound to fixed PC. The adsorbed and conjugated plasma proteins for GAPC and FRPC have the same sequence: SA > GG > FB vs SA > GG > FB. Protein conjugation may affect the remodeling of collagenous cardiovascular tissue prostheses post implantation.  相似文献   

20.
Human lysosomal acid lipase/cholesteryl ester hydrolase (hLAL) is essential for the intralysosomal metabolism of cholesteryl esters and triglycerides taken up by receptor-mediated endocytosis of lipoprotein particles. The key role of the enzyme in intracellular lipid homeostasis is illustrated by two lysosomal storage diseases inherited as autosomal recessive traits. Wolman disease, associated with deficient hLAL activity, leads to massive intracellular substrate accumulation and is always fatal in early infancy. Cholesteryl ester storage disease (CESD), in contrast, is characterized by very low levels of enzymic activity sufficient to allow survival of the affected patients into adulthood. In order to elucidate the underlying molecular defects in Wolman disease, we have characterized the hLAL gene in two female Wolman patients of German and Turkish origin by SSCP and DNA sequence analysis. Our results demonstrate that the German proband was compound heterozygous for an 8-bp deletion in exon 3 and a 2-bp deletion in exon 4 of the hLAL gene. These frameshift mutations lead to protein truncation at amino acid positions 24 and 116 and to complete loss of hydrolytic activity. The Turkish proband, in contrast, was homozygous for a G(1064)-->T substitution in exon 10 of the hLAL gene which converts the completely conserved glycine (GGG) residue at position 321 of the mature enzyme to tryptophan (TGG). In vitro expression of the hLAL(Gly(321)-->Trp) cDNA construct revealed that the amino acid replacement results in a more than 99% reduction of neutral lipid hydrolysis. The mutations provide new insights into the molecular basis of Wolman disease which is apparently more heterogeneous at the genetic level than cholesteryl ester storage disease.-Lohse, P., S. Maas, P. Lohse, A. C. Sewell, O. P. van Diggelen, and D. Seidel. Molecular defects underlying Wolman disease appear to be more heterogeneous than those resulting in cholesteryl ester storage disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号