首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms responsible for myocardial injury and cell death in myocarditis are still unclear. We examined whether myocardial cell death occurs via apoptosis in myosin-induced autoimmune myocarditis in rats and whether the Fas/Fas ligand (FasL) system plays a role in this apoptosis. On days 14, 17, 21, and 35 after immunization with porcine heart myosin, some cardiomyocytes and infiltrating lymphocytes were found to be apoptotic on in situ terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay, but none was on day 60 and in control rats. Apoptotic indices peaked at day 17, and laddering of genomic DNA from the affected myocardium was observed on days 17 and 21 on agarose gel electrophoresis. The expression of Fas mRNA and protein was detected on days 17 and 21 in some cardiomyocytes and infiltrating lymphocytes by Northern blot analysis and immunohistochemistry, respectively. In addition, FasL was detected in some infiltrating lymphocytes on days 14, 17, and 21 by both in situ hybridization and immunostaining, and FasL-positive lymphocytes were mainly CD4+ cells. Some rats were injected with anti-Fas Ab (0.1 mg/kg) or anti-FasL Ab (0.1 mg/kg), and subsequently, inflammatory lesions exhibited less severe than did untreated rats with myocarditis. These findings suggest that cell death via apoptosis of cardiomyocytes and lymphocytes is one of the mechanisms of myocardial injury in autoimmune myocarditis, and that the Fas/FasL system might play a role in the induction of this apoptosis.  相似文献   

2.
Most thymocytes express high levels of Fas Ag (Apo-1/CD95); however, the role of Fas/Fas ligand-mediated apoptosis in thymocyte development remains unclear. During gestational development of thymocytes in C57BL/6(B6) +/+ mice, the highest levels of Fas ligand mRNA and Fas ligand protein expression were detected at gestational day (GD) 15, and there was a ninefold decrease in Fas ligand mRNA expression between GD 15 and 17 accompanied by a sixfold increase in Fas mRNA. Apoptotic thymocytes were first detected in the medulla at GD 15, and increasing numbers of cortical clusters and scattered, single apoptotic cells were present on GD 16 and 17. Thus, early apoptosis correlated with high expression of Fas ligand. High levels of Fas ligand mRNA were maintained throughout gestational development in thymocytes of Fas-deficient B6-lpr/lpr mice, but cortical clusters and scattered apoptotic cells were decreased relative to B6 +/+ mice before GD 17. Kinetic analysis of fetal thymic organ cultures treated with anti-Fas Ab demonstrated that thymocytes become sensitive to Fas-mediated apoptosis during the transition from the CD4-CD8- to the CD4+CD8+ phenotype. More mature CD4+CD8+ thymocytes and CD4+ and CD8+ thymocytes became resistant to Fas-mediated apoptosis after GD 17, despite high expression of Fas. However, low avidity engagement of the TCR on Fas-sensitive CD4+CD8+ thymocytes before GD 17 induced resistance to Fas-mediated apoptosis. The present results indicate that Fas plays a critical role in mediating apoptosis during early gestational thymocyte development and that thymocytes that receive a survival signal through TCR/CD3 become resistant to Fas-mediated apoptosis.  相似文献   

3.
A series of 2H- and 13C-labeled glutamates were used as substrates for coenzyme B12-dependent glutamate mutase, which equilibrates (S)-glutamate with (2S,3S)-3-methylaspartate. These compounds contained the isotopes at C-2, C-3, or C-4 of the carbon chain: [2-2H], [3,3-2H2], [4,4-2H2], [2,3,3,4,4-2H5], [2-13C], [3-13C], and [4-13C]glutamate. Each reaction was monitored by electron paramagnetic resonance (EPR) spectroscopy and revealed a similar signal characterized by g'xy = 2.1, g'z = 1.985, and A' = 5.0 mT. The interpretation of the spectral data was aided by simulations which gave close agreement with experiment. This approach underpinned the idea of the formation of a radical pair, consisting of cob(II)alamin interacting with an organic radical at a distance of 6.6 +/- 0.9 A. Comparison of the hyperfine couplings observed with unlabeled glutamate with those from the labeled glutamates enabled a principal contributor to the radical pair to be identified as the 4-glutamyl radical. These findings support the currently accepted mechanism for the glutamate mutase reaction, i.e., the process is initiated through hydrogen atom abstraction from C-4 of glutamate by the 5'-deoxyadenosyl radical, which is derived by homolysis of the Co-C sigma-bond of coenzyme B12.  相似文献   

4.
5.
Hashimoto's thyroiditis (HT) is an autoimmune disorder characterized by diffuse thyroid lymphocytic infiltration and follicle destruction. Cross-linking of the Fas receptor with its own ligand (FasL) triggers apoptosis in various systems, whereas the Bcl-2 protooncogene inhibits apoptotic cell death. The involvement of Fas, FasL, and Bcl-2 in the apoptotic process in HT was evaluated in 15 thyroid tissue samples from patients with HT stained for apoptosis and for Fas, FasL, and Bcl-2 protein expression. Eight samples from healthy thyroid tissue were used for comparison. Thyroid follicles in HT samples exhibited strong staining for Fas and FasL and a high percentage of apoptosis (30.3 +/- 14.5%, mean +/- SD), in contrast to normal control follicles that exhibited moderate Fas, minimal or no FasL, and hardly any apoptosis. Immunostaining for Bcl-2 was high in normal, and weak in involved, thyroid follicles. Infiltrating lymphocytes stained weakly for FasL and strongly for Bcl-2. We conclude that follicular cells in HT undergo apoptosis by concomitant up-regulation of FasL and Fas and down-regulation of Bcl-2 protein. The lymphocytes do not seem to be directly engaged in the process with their own FasL, but they may provide the appropriate cytokine milieu that, in turn, up-regulates Fas and/or FasL leading to apoptosis.  相似文献   

6.
Removable dies used in fixed prosthodontics typically exhibit movement. A solid working cast permits the technician to perfect the interproximal contacts of fixed prostheses. This saves the clinician time at the insertion appointment. This article describes a quick and easy procedure for making a solid working cast with easily visualized margins.  相似文献   

7.
Bcl-2 and bcl-xL function as suppressors of programmed cell death. The expression of bcl-2 protein in vivo is associated with long-lived hematopoietic cells such as mature lymphocytes and early myeloid progenitors. Bcl-xL, a homologue of bcl-2, is also expressed in lymphocytes and thymocytes. In contrast, the bcl-2-related proteins (bax, bad, and bak) act by promoting apoptotic cell death as shown from their expression in hematopoietic cell lines. We analyzed the expression of bcl-2 and bcl-x proteins in hematopoietic precursors obtained from various cell sources in adult mobilized peripheral blood collected from 13 patients with solid tumors, 8 adult bone marrow, and 12 umbilical cord blood. The analysis was based on the expression of the proliferation and activation specific antigens, CD38 and class II (HLA-DR). Similarly, we analyzed the expression of bcl-2-related proteins bcl-xL, bax, bad, and bak before and during ex-vivo expansion. Hematopoietic precursors expressing strongly the CD34 antigen (CD34(s+)) and lacking CD38 or HLA-DR expression were analyzed by using three-color immunofluorescence staining. The majority of CD34(+) cells expressed bcl-2 and unexpectedly showed a bimodal distribution of low and high expression. More cells that lacked or expressed low density CD38 expressed low bcl-2 than the more differentiated counterparts (those with high density CD38). Immaturity (ie, little or no HLA-DR) is associated with the expression of low bcl-2 compared with HLA-DR+. However, HLA-DR-/low population contained a lower number of cells expressing low bcl-2 (30% to 40%) than CD38(-/low) in comparable samples. The hematopoietic precursors with bcl-2(low) and bcl-2(high) formed a homogeneous population of undifferentiated lymphoid-like cells having a similar forward scatter. These cells expressed strongly the bcl-xL protein (>95%) but were bax low (4% to 12%), bad low (0% to 0.8%), and bak low (0% to 3%). The expression of apoptosis specific protein (ASP) was also low (3.4% +/- 3.1%) as was Annexin V. In addition, the CD34(+)/CD38(-) showed low cell cycle activity (<2.2%). Induction of apoptosis by overnight incubation of CD34 cells in serum-deprived medium resulted in the upregulation of bcl-2 as a single population histogram. Thus, these results suggest that in quiescent hematopoietic precursors, the bcl-2 protein plays a less prominent role as a survival promoter than bcl-xL and that the low bcl-2 expression did not promote apoptosis. During day 10 of ex vivo expansion of CD34(+) cells in liquid culture containing stem cell factor, interleukin-3 (IL-3), IL-6, IL-1beta, and erythropoietin, the CD34(+)/CD38(-) cells expressed high bcl-2 as a single population histogram, and greater than 90% were bcl-xL high. However, the expression of pro- and apoptotic antigens increased: bax (10% to 15%), bad (5% to 8%), bak (6% to 14%), and ASP (6% to 10%). These results show the importance of monitoring the expression of these proteins when defining the culture conditions for ex vivo expansion.  相似文献   

8.
It has been believed that the Fas expressed on human peripheral blood T cells (PBT) is nonfunctional, because these cells are insensitive to agonistic anti-Fas/Apo-1 mAbs that efficiently kill in vitro-activated T cells and many Fas-expressing cell lines. Here, we demonstrate that membrane-bound Fas ligand (FasL) kills both fresh and in vitro-activated PBT, indicating that the Fas expressed on fresh PBT is functional. In contrast, soluble FasL kills only the latter. Naive T cells in umbilical cord blood do not express Fas, but can be induced to express Fas by IFN-gamma or by a combination of IL-2 and anti-CD28 mAb, after which they acquire sensitivity to membrane but not to soluble FasL. Soluble FasL inhibited the killing of fresh PBT by membrane FasL. These results indicate that the shedding of FasL from the membrane is a mechanism for downregulating at least part of its killing activity.  相似文献   

9.
The Fas receptor is a member of a family of cell death receptors, including tumor necrosis factor receptor I (TNFR I), death receptor 3 and 4 (DR3 and DR4), and cytopathic avian receptor 1 (CAR1). The Fas receptor is composed of several discrete domains, including three cysteine-rich domains (CRDs), a transmembrane domain, and an intracellular domain responsible for transmitting an apoptotic signal. While the mechanism of Fas-mediated cell death has become elucidated, the requirements for Fas ligand binding to the receptor have not been fully defined. Using a series of chimeric Fc-receptor fusion proteins between the human Fas receptor and TNFR I, each cysteine-rich domain of Fas was found to be required for interaction with the Fas ligand. Interestingly, TNFR I CRD1 could partially substitute for the Fas CRD1. The importance of this domain was underscored by the analysis of a Fas extracellular mutation (C66R), which resulted in a complete loss of ligand binding. This mutation was cloned from a human patient suffering from Canale-Smith syndrome, which is characterized by autoimmunity resembling that observed in the lpr and lprcg mice. The localization of essential ligand binding domains in the Fas receptor correlated exactly with the ability of the Fas receptor fusion proteins to prevent cell death mediated by the Fas ligand.  相似文献   

10.
11.
To explore the pathway of p53 dependent cell death, we investigated if p53 dependent apoptosis following DNA damage is mediated by the CD95 (APO-1/Fas) receptor/ligand system. We investigated cell lines of solid human tumors upon treatment with clinically relevant chemotherapeutic drugs known to act via p53 accumulation. Treatment with these cytotoxic drugs led to an upregulation of both, the CD95 receptor (CD95) and the CD95L (CD95L). Induction of the CD95L occurred in p53 wild-type (wt), p53 mutant (mt) and in cell lines lacking p53 altogether (p53-/-). Thus, the regulation of the CD95L in response to chemotherapeutic drugs clearly involves p53 independent mechanisms. Most importantly, upregulation of CD95 occurred only in cell lines with wild-type p53, thereby strongly increasing the responsiveness towards CD95 mediated apoptosis. Thus, upregulation of the CD95 receptor seems to be dependent on intact wild-type p53. Apoptosis was mediated by cleavage of the receptor proximal caspase, caspase-8 (FLICE/MACH). Caspase-8 cleavage was observed, independent of the p53 status of the tumor cells and irrespective whether or not apoptosis was dependent on the CD95 system. Hence, additional effector pathways besides CD95/CD95L signaling are likely to contribute to drug-induced apoptosis.  相似文献   

12.
Fas ligand (FasL) is a member of the tumor necrosis factor family and induces apoptosis in Fas (CD95)-bearing target cells. In this study, we generated several mAbs that react with mouse FasL (mFasL) and characterized their functional properties. One of these mAbs, K10, specifically reacted with mFasL derived from C57BL/6 (B6) mice, but not that from BALB/c mice as estimated by surface staining and blocking of cytotoxic activities of mFasL transfectants, suggesting a polymorphism of mFasL. Sequence analysis of mFasL cDNA from several strains revealed that BALB/c and DBA/2 mice have three nucleotide differences from the known B6 and C3H sequences, which result in two amino acid substitutions (Thr-184 --> Ala-184 and Glu-218 --> Gly-218) in the extracellular region. Analysis of the K10 reactivity and genotyping by PCR-restriction fragment length polymorphism revealed that inbred mice segregate into the following two allotypes: mFasL.1 (B6, C3H, MRL, SJL, NOD, NZB, NZW) and mFasL.2 (BALB/c, DBA/1, DBA/2). Interestingly, COS7 cells expressing BALB/c FasL lysed Fas-bearing target cells more efficiently than those expressing B6 FasL. Furthermore, BALB/c-derived CD8-FasL fusion protein, which is composed of the extracellular domains of human CD8alpha and mFasL, exhibited 9-fold higher specific activity than did B6-derived CD8-FasL. These results suggest that in mFasL.2 mice the Fas/FasL system works more effectively than in mFasL.1 mice.  相似文献   

13.
Effector mechanisms for allograft injury remain unclear. In the present study, we verified the contribution of Fas and Fas ligand (FasL) to cardiac allograft rejection by utilizing the Fas-deficient lpr or FasL-deficient gld mice as the donor or recipient. Cardiac myocytes prepared from normal mice, but not those from lpr mice, constitutively expressed Fas and were susceptible to FasL-mediated lysis. Survival of cardiac allografts was substantially prolonged when gld or lpr mice were used as the recipient. In contrast, cardiac allografts from lpr mice were normally rejected without a delay. Histological examination of the grafts in the gld or lpr recipients demonstrated a lesser cellular infiltration and much milder myocyte damage. Proliferative response and cytotoxic T lymphocyte induction against the donor-type alloantigens were not impaired in the gld or lpr recipients. These results indicate a substantial contribution of FasL to cardiac allograft rejection, independent of Fas in the grafts. This ralses a possibility that FasL may be more generally involved in tissue damage associated with various diseases than expected from the expression of Fas in the target organs.  相似文献   

14.
15.
Currently, hyperoxia is being investigated as a method for producing contrast in magnetic resonance images of the brain, solid tumors, and the eye. However, the underlying physiological mechanisms involved in this type of contrast are still not completely understood. For example, under what conditions would dissolved plasma oxygen contribute to the hyperoxia-induced contrast? Using the eye as a model system, we varied the level of dissolved plasma oxygen and observed different patterns of contrast in the vitreous. The observed contrast changes were consistent with tissue oxygen buffering by hemoglobin at an arterial PO2 of 200 mm Hg and dissolved oxygen offloading at arterial PO2's > 350 mm Hg. These data demonstrate that dissolved plasma oxygen does not become an important contrast mechanism until the arterial oxygen tension exceeds approximately 350 mm Hg. The implication of this result to studies in other organs is discussed.  相似文献   

16.
Anti-CD3 monoclonal antibodies (MoAbs) and glucocorticoid hormones induce apoptosis in immature thymocytes and peripheral T lymphocytes. This process is inhibited by a number of growth factors, including interleukin-2 (IL-2), IL-3, and IL-4, as well as by triggering of the adhesion molecule CD44, which would indicate that signals generated by membrane receptors can modulate the survival of lymphoid cells. To investigate whether triggering of CD2 may also affect apoptosis in lymphoid cells, we analyzed the effect of stimulation with anti-CD2 MoAbs on T-cell apoptosis induced by two stimuli, anti-CD3 MoAbs and dexamethasone (DEX), using a hybridoma T-cell line and a T-helper cell clone. The results show that CD2 engagement decreased anti-CD3 MoAb-induced apoptosis, but did not influence DEX-induced cell death. Furthermore, the decrease appeared to be related to the expression of Fas/APO-1 (CD95) and Fas-ligand (Fas-L). In fact, we show that CD2 stimulation inhibits apoptosis by preventing the CD3-induced upregulation of Fas and Fas-L in a Fas-dependent experimental system. These data suggest that a costimulatory molecule may control a deletion pathway and may therefore contribute to the regulation of peripheral tolerance.  相似文献   

17.
18.
19.
20.
Dendritic cells (DC) are considered to be the most potent antigen-presenting cells (APC) in the immune system. In this study, we analyzed the regulation of apoptosis of human peripheral blood-derived DC. DC were generated from adherent peripheral blood mononuclear cells that had been cultured for 7 days with granulocyte-macrophage colony-stimulating factor and interleukin-4. These cells displayed phenotypic properties of DC, including dendritic processes, expression of CD1a and lack of expression of CD14, and were very potent at presenting soluble antigens to T cells. Blood-derived DC were demonstrated to express the Fas/CD95 antigen and an agonist antibody to CD95 strongly induced apoptotic cell death in these cells. Soluble trimeric CD40 ligand potently inhibited both CD95-mediated and spontaneous apoptosis in DC. The data suggest that interactions between members of the tumor necrosis factor family of ligands expressed by T cells with their receptors on DC play an important role in the regulation of apoptosis in DC during antigen presentation and may, therefore, regulate the duration of T cell expansion and cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号