首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis is given for fully developed thermal transport through a wall-bounded turbulent fluid flow with constant heat flux supplied at the boundary. The analysis proceeds from the averaged heat equation and utilizes, as principal tools, various scaling considerations. The paper first provides an accounting of the relative dominance of the three terms in that averaged equation, based on existing DNS data. The results show a clear decomposition of the turbulent layer into zones, each with its characteristic transport mechanisms. There follows a theoretical treatment based on the concept of a scaling patch that justifies and greatly extends these empirical results. The primary hypothesis in this development is the monotone and limiting Peclet number dependence (at fixed Reynolds number) of the difference between the specially scaled centerline and wall temperatures. This fact is well corroborated by DNS data. A fairly complete qualitative and order-of-magnitude quantitative picture emerges for a complete range in Peclet numbers. It agrees with known empirical information. In a manner similar to previous analyses of turbulent fluid flow in a channel, conditions for the existence or nonexistence of logarithmic-like mean temperature profiles are established. Throughout the paper, the classical arguments based on an assumed overlapping of regions where the inner and outer scalings are valid are avoided.  相似文献   

2.
A numerical investigation of turbulent forced convection in a two-dimensional channel with periodic transverse grooves on the lower channel wall is conducted. The lower wall is subjected to a uniform heat flux condition while the upper wall is insulated. To investigate turbulence model effects, computations based on a finite volume method, are carried out by utilizing four turbulence models: the standard k − ε, the Renormalized Group (RNG) k − ε, the standard k − ω, and the shear stress transport (SST) k − ω turbulence models. Parametric runs are made for Reynolds numbers ranging from 6000 to 18,000 with the groove-width to channel-height ratio (B/H) of 0.5 to 1.75 while the groove pitch ratio of 2 and the depth ratio of 0.5 are fixed throughout. The predicted results from using several turbulence models reveal that the RNG and the k − ε turbulence models generally provide better agreement with available measurements than others. Therefore, the k − ε model is selected to use in prediction of this complex flow. In addition, the results of the heat transfer coefficient, friction factor, skin friction coefficient and thermal enhancement factor are also examined. It is found that the grooved channel provides a considerable increase in heat transfer at about 158% over the smooth channel and a maximum gain of 1.33 on thermal performance factor is obtained for the case of B/H = 0.75. This indicates that the reverse/re-circulation flow in a channel with transverse grooves can improve the heat transfer rate.  相似文献   

3.
Three-dimensional conjugate numerical simulations using the inlet, average and variable thermal properties respectively were performed for the laminar water flow and heat transfer in rectangular microchannels with Dh of 0.333 mm at Re of 101–1775. Both average and variable properties are adopted in data reduction. The calculated local and average characteristics of flow and heat transfer are compared among different methods, and with the experiments, correlations and simplified theoretical solution data from published literatures. Compared with the inlet property method, both average and variable property methods have significantly lower fapp, but higher convective heat transfer coefficient hz and Nuz. Compared with the average property method, the variable property method has higher fappReave and lower hz at the beginning, but lower fappReave and higher hz at the later section of the channel. The calculated Nuave agree well with the Sieder-Tate correlation and the recently reported experiment, validating the traditional macroscale theory in predicting the flow and heat transfer characteristics in the dimension and Re range of the present work.  相似文献   

4.
This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.  相似文献   

5.
A numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a three-dimensional isothermal wall channel of aspect ratio, AR = 2 with 45° staggered V-baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 1200. To generate two pair of main streamwise vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and staggered arrangement on the lower and upper walls of the channel. Effects of different baffle heights on heat transfer and pressure drop in the channel are studied and the results of the V-baffle pointing upstream are also compared with those of the V-baffle pointing downstream. It is apparent that in each of the main vortex flows, a pair of streamwise twisted vortex (P-vortex) flows can induce impinging flows on a sidewall and a wall of the interbaffle cavity leading to drastic increase in heat transfer rate over the channel. In addition, the rise in the V-baffle height results in the increase in the Nusselt number and friction factor values. The computational results reveal that the optimum thermal enhancement factor is around 2.6 at baffle height of 0.15 times of the channel height for the V-baffle pointing upstream while is about 2.75 at baffle height of 0.2 times for the V-baffle pointing downstream.  相似文献   

6.
In the present study, the numerical analysis on the heat transfer and flow developments in the channel with one-side corrugated plate under constant heat flux conditions is presented. The corrugated plate with the corrugated tile angles of 40° is simulated with the channel height of 7.5 mm. The flow and heat transfer developments are simulated by the k-ε standard turbulent model. A finite volume method with the structured uniform grid system is employed for solving the model. Effects of relevant parameters on the heat transfer and flow developments are considered. Breaking and destabilizing in the thermal boundary layer are promoted as fluid flowing through the corrugated surface. Therefore, the corrugated surface has a significant effect on the enhancement of heat transfer.  相似文献   

7.
The effect of a number of inclined perforated baffles on the flow patterns and heat transfer in the rectangular channel with different types of baffles is numerically and experimentally checked out. Reynolds numbers are varied between 23,000 and 57,000. The SST k − ω turbulence model is used in the method to predict turbulent flow. The baffles have the width of 19.8 cm, the square diamond type hole having one side length of 2.55 cm, and the inclination angle of 5°. The results show that the flow patterns around the holes are entirely different with different numbers of holes and it significantly affects the local heat transfer, and two baffles provide greater heat transfer performances than a single baffle.  相似文献   

8.
The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes(RANS) equations with k-ω turbulence model.The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work.The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span.The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics.In the steady flow field,the high heat transfer coefficient existed at several positions.In the unsteady case,the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields.These unsteady effects induced the periodic variation of the leakage flow and the vortexes,which resulted in the fluctuation of the heat transfer coefficient.The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.  相似文献   

9.
The effect of transpiration velocity on the heat and mass transfer characteristics of mixed convection flow along a permeable vertical flat plate under the combined effects of thermal and mass diffusion is analysed. The diffusion-thermo and thermo-diffusion effects as well as the interfacial velocities due to mass diffusion are negligibly small. The plate is maintained at a uniform temperature and species concentration. Numerical results for the local skin-friction, the local Nusselt number and the local Sherwood number, as well as for the velocity, the temperature and the concentration profiles, are presented for diffusion of common species into air only. In general, it has been found for thermally assisted flow that the local surface shear-, heat-, and mass-transfer rates decrease owing to suction of fluid. This trend reversed for blowing of fluid. In addition this trend is higher for species of larger Schmidt number as well as for increasing buoyancy force.  相似文献   

10.
In the present study, numerical and experimental results of the heat transfer and flow characteristics of the horizontal spiral-coil tube are investigated. The spiral-coil tube is fabricated by bending a 8.00 mm diameter straight copper tube into a spiral-coil of five turns. The innermost and outermost diameters of the spiral-coil are 270.00 and 406.00 mm, respectively. Hot and cold water are used as working fluids. The k-ε standard two-equation turbulence model is applied to simulate the turbulent flow and heat transfer characteristics. The main governing equations are solved by a finite volume method with an unstructured nonuniform grid system. Experiments are performed to obtain the heat transfer and flow characteristics for verifying the numerical results. Reasonable agreement is obtained from the comparison between the results from the experiment and those obtained from the model. In addition, the Nusselt number and pressure drop per unit length obtained from the spiral-coil tube are 1.49 and 1.50 times higher than those from the straight tube, respectively.  相似文献   

11.
Correlation for flow boiling heat transfer in mini-channels   总被引:8,自引:0,他引:8  
In view of practical significance of a correlation of heat transfer coefficient in the aspects of such applications as engineering design and prediction, some efforts towards correlating flow boiling heat transfer coefficients for mini-channels have been made in this study. Based on analyses of existing experimental investigations of flow boiling, it was found that liquid-laminar and gas-turbulent flow is a common feature in many applications of mini-channels. Traditional heat transfer correlations for saturated flow boiling were developed for liquid-turbulent and gas-turbulent flow conditions and thus may not be suitable in principle to be used to predict heat transfer coefficients in mini-channels when flow conditions are liquid-laminar and gas-turbulent. By considering flow conditions (laminar or turbulent) in the Reynolds number factor F and single-phase heat transfer coefficient hsp, the Chen correlation has been modified to be used for four flow conditions such as liquid-laminar and gas-turbulent one often occurring in mini-channels. A comparison of the newly developed correlation with various existing data for mini-channels shows a satisfactory agreement. In addition, an extensive comparison of existing general correlations with databases for mini-channels has also been made.  相似文献   

12.
Numerical results of three-dimensional separated flow and heat transfer in a rectangular channel with a suddenexpansion are presented in this paper.Numerical simulations of Navier-Stokes and energy equations are carriedout using the finite difference method.The results of three-dimensional calculations are compared with thetwo-dimensional ones,and effects of the aspect ratio of channel upon the flow are shown.The transition fromsymmetric to asymmetric flow appears at lower Reynolds number as increasing the aspect ratio.The details oflocal heat transfer characteristics in two different separated flow regions on two downstream walls are clarified.Two-dimensionality of the flow and heat transfer almost disappears for the aspect ratio considered.  相似文献   

13.
高效热泵系统性能研究一直是热泵空调领域普遍关注的热点问题,针对设计开发的双级套管串联式热泵系统。采用3D有限容积法和可实现的k-ε模型,数值分析入口流体温度、流动速度对换热系数以及内外管努塞尔数的影响规律。结果表明,降低入口水温或者增加入口制冷剂温度能够提高整体传热性能,Nui随着水和制冷剂流率的增加有所增加,而Nuo随着水流率的增加而增加,但随着制冷剂流率则增加而减小,Nui 和Nuo都随着水温的减小或制冷剂温度的增大而增大。  相似文献   

14.
The effect of SiO2 particles on heat transfer performance of a pulsating heat pipe(PHP) was investigated experimentally.DI water was used as the base fluid and contrast medium for the PHP.In order to study and measure the character,there are SiO2 /H2 O nanofluids with different concentration and applying with various heating powers during the experiment investigation.According to the experimental result,the high fraction of SiO2 /H2 O will deteriorate the performance of PHP compared with DI water,i.e.the thermal resistance and the temperature of evaporation section increases.It is in contrary in the case of low fraction of SiO2 /H2 O.Finally,the comparison of the thermal performances between the normal operation system and the static settlement system is given.It is found that both the thermal resistance of nanofluid PHP and the temperature of the evaporation section increase after standing for a period,and it is the same trend for the temperature fluctuation at the identical heating power for PHP.  相似文献   

15.
In this study, the forced convection heat transfer around a discrete heater located in a channel subjected to laminar pulsating air flow is numerically investigated. Simulations are conducted for six different frequencies and three different amplitudes, while the Reynolds number (Re = 125) and Prandtl number (Pr = 0.71) remain constant for all cases. The impact of the important governing parameters such as the Womersley number (Wo) and the amplitude of flow pulsation (Ao) on heat transfer rate from discrete heaters is examined in detail. The instant velocity and temperature profiles are obtained to determine of the role of dimensionless parameters for pulsating flow. The numerical results show that thermal transport from the heater is greatly affected by the frequency and amplitude of the flow pulsation. The results given are dimensionless parameters.  相似文献   

16.
Liquid hydrogen flow boiling heat transfer in tubes is of great importance in the hydrogen applications such as superconductor cooling, hydrogen fueling. In the present study, a numerical model for hydrogen nucleate flow boiling based on the wall partition heat flux model is established. The key parameters in the model such as active nucleation site density, bubble departure diameter and frequency are carefully discussed and determined to facilitate the modeling and simulation of hydrogen flow boiling. Simulation results of the numerical model show reasonably well agreement with experimental data from different research groups in a wide operation condition range with the means absolute error (MAE) of 10.6% for saturated and 5.3% for subcooled flow boiling. Based on the model, wall heat flux components and void fraction distribution of hydrogen flow boiling are studied. Effects of mass flow rate and wall heat flux on the flow boiling heat transfer performance are investigated. It is found that in the hydrogen nucleate flow boiling, the predominated factor is the Boiling number, rather than the vapor quality. A new simple correlation is proposed for predicting hydrogen saturated nucleate flow boiling Nusselt number. The MAE between the correlation predicted and experimentally measured Nusselt number is 13.6% for circular tubes and 12.5% for rectangular tubes. The new correlation is applicable in the range of channel diameter 4–6.35 mm, Reynolds number 64000–660,000, saturation temperature 22–29 K, Boiling number 8.37 × 10?5–2.33 × 10?3.  相似文献   

17.
The internal cooling passage of a gas turbine blade equipped with ribs is modeled as a rotating ribbed channel. The flow and heat transfer in the ribbed channel have been investigated by conducting large eddy simulations with a dynamic subgrid-scale model. The Reynolds number considered is 30,000 and rotation numbers are 0, 0.1 and 0.3. The time-averaged results show good agreement with the experimental data. By comparing the present data with those of the smooth channel, it is observed that the vortices shed from the rib induce strong wall-normal motions, and they are augmented on the trailing-wall side by the rotation, resulting in a significant increase in the heat transfer due to rotation. It is also shown that the similarity between the streamwise velocity and temperature is significantly destroyed by both the rotation and the rib itself.  相似文献   

18.
Theoretical analysis of heat transfer in laminar pulsating flow   总被引:2,自引:0,他引:2  
Pulsation effect on heat transfer in laminar incompressible flow, which led to contradictory results in previous studies, is theoretically investigated in this work starting from basic principles in an attempt to eliminate existing confusion at various levels. First, the analytical solution of the fully developed thermal and hydraulic profiles under constant wall heat flux is obtained. It eliminates the confusion resulting from a previously published erroneous solution. The physical implications of the solution are discussed. Also, a new time average heat transfer coefficient for pulsating flow is carefully defined such as to produce results that are both useful from the engineering point of view, and compliant with the energy balance. This rationally derived average is compared with intuitive averages used in the literature. New results are numerically obtained for the thermally developing region with a fully developed velocity profile. Different types of thermal boundary conditions are considered, including the effect of wall thermal inertia. The effects of Reynold and Prandtl numbers, as well as pulsation amplitude and frequency on heat transfer are investigated. The mechanism by which pulsation affects the developing region, by creating damped oscillations along the tube length of the time average Nusselt number, is explained.  相似文献   

19.
The flow boiling phenomenon of liquid hydrogen (LH2) during transportation in microgravity is very different from that under terrestrial condition. In this study, a saturated flow boiling of LH2 in a horizontal tube has been simulated under microgravity condition using coupled level-set and volume of fluid method. The validation of the developed model shows good agreement with the experimental data from the literature. The changes of heat fluxes and pressure drops under different gravitational accelerations were analyzed. And, the variation of heat fluxes with different wall superheat and contact angle were compared between microgravity (10−4g) and normal gravity (1g) condition. Also, the influence of surface tension were studied under microgravity. The numerical results indicate that the heat flux decrease with the decrement of gravitational acceleration. And the heat transfer ratio decrease with the increment of wall superheat in the nucleate boiling regime. The heat transfer slightly reduce when considering surface tension. In addition, the changes of contact angle have a more significant impact on heat transfer under microgravity condition.  相似文献   

20.
The magnetohydrodynamic (MHD) effect on the flow structures and heat transfer characteristics was studied numerically for a liquid metal-gas annular flow under a transverse magnetic field. The side layers, in which the velocity was increased, appeared near the eastern and western sidewalls in an annular MHD flow as in a single-phase liquid metal MHD flow. Temperature distribution in the liquid film, and the Nusselt number distribution in the angular direction were influenced by the flow structures with the side layers. Consequently heat transfer rate was higher at the eastern/western sidewalls than that at the southern/northern walls. The pressure drop in the MHD annular flow is of the same order of magnitude as in the single-phase MHD pipe flow under similar liquid metal flow condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号