首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
对Mg-Zn-Y-Nd-Zr合金的显微组织和力学性能进行了研究。结果表明,Nd元素的加入部分取代了W相(Mg3Zn3Y2)中的Y元素,形成了新的第二相Mg3Zn3(Y, Nd)2。热挤压后观察到由细小的等轴再结晶晶粒和粗大的细长未再结晶晶粒组成的典型双峰结构。Nd元素的加入促进了热挤压过程中的动态再结晶,随着Nd含量的增加,动态再结晶率增加,挤压态合金的整体织构强度减弱。Nd的加入细化了晶粒并改善了合金的力学性能。添加0.5%(质量分数)Nd时,挤压态合金表现出高强度和高塑性的良好结合:屈服强度为362 MPa,极限抗拉伸强度为404 MPa,延伸率为10.2%。时效处理后合金的抗拉伸强度进一步提高,峰值时效极限抗拉伸强度可达421 MPa。合金的高强度主要归功于超细再结晶晶粒和析出强化。  相似文献   

2.
The effect of Nd addition and the in?uence of extrusion processes on the microstructure and mechanical properties of Mg–6Zn–0.5Zr(ZK60) and Mg–6Zn–1.5Nd–0.5Zr(ZKNd602) alloys were investigated. Nd element can obviously re?ne the microstructure of both as-cast and asextruded Mg–Zn–Nd–Zr alloy. All of the extruded alloys exhibit a bimodal grain structure composed of equiaxed?ne recrystallized(DRXed) grains and elongated coarse un DRXed grains. It is necessary to achieve high strength,particularly the yield strength, for ZKNd602 alloy, when it is extruded with a lower extrusion temperature, a suitable extrusion ratio and a relatively lower extrusion ram speed. In this study, the ultimate tensile strength(UTS),yield strength(YS) and elongation(El) of the extruded ZKNd602 alloy were 421 MPa, 402 MPa and 6.7 %,respectively, with extrusion temperature of 290 °C, extrusion ratio of 18:1 and a ram speed of approximate0.4 mm·s~(-1). Meanwhile, the extrusion process has obvious effects on the room-temperature properties but weak effects on the high-temperature properties.  相似文献   

3.
通过铸造和300℃热加压制备细晶Mg-6Zn-4Y合金,利用XRD、OM、SEM和TEM研究合金组织,并测试其室温拉伸性能。结果表明,合金主要由α-Mg和W相两相组成,挤压态合金具有双峰晶粒尺寸分布;细小晶粒为动态再结晶晶粒,平均尺寸为1.2μm;粗大晶粒(占面积分数的23%)为未再结晶区域,并沿挤压方向被拉长。合金的极限抗拉强度、屈服强度和伸长率分别为(371±10)MPa,(350±5)MPa和(7±2)%,其工程应力—应变曲线有明显的屈服点。合金高强度归因于晶粒细化和W相、纳米沉淀颗粒及强基面织构的增强作用。  相似文献   

4.
通过对Mg-6Gd-5Y-1Zn(质量分数,%)合金在固溶和时效处理状态下显微组织和力学性能的研究发现,α-Mg基体、沿挤压方向分布的条状18R-LPSO相、少量的Mg24(GdYZn)5 相以及细层片状的14H-LPSO相构成了挤压态合金的组成相。挤压态合金经固溶(T4)处理后,一部分18R-LPSO相溶入基体,并且基体中的14H-LPSO相伸长同时粗化。挤压态合金经过固溶加时效(T6)处理后,大量β′相从α-Mg基体中析出。T6态合金的室温力学性能最好,其屈服强度、抗拉强度及伸长率分别为272 MPa、406 MPa和6.1%。β′相沉淀也发生在挤压态合金的直接人工时效(T5)处理过程,但相比于T6处理,14H-LPSO相和β′相在基体中的体积分数均偏低。  相似文献   

5.
The microstructure revolution and mechanical properties of as-extruded and peak-aged Mg–6Zn–1Mn– 4Sn–0.5Ca (ZMT614–0.5Ca) alloy were studied by OM, SEM, TEM, hardness testing and tensile testing. The results showed that the as-cast ZMT614–0.5Ca alloy mainly consisted of α-Mg, Mg–Zn and CaMgSn phase. The hot extrusion process effectively refined the microstructure and led to a completely dynamic recrystallized microstructure. The average grain size of as-extruded alloy was ˜4.85 μm. After solution treatment, remained CaMgSn with high melting point played a significant role in pinning effect and impeding the migration of grain boundary. After aging treatment, peak-aged ZMT614–0.5Ca alloy exhibited a good combination of strength and ductility, with yield strength, ultimate tensile strength and elongation being 338 MPa, 383 MPa and 7.5%, respectively. The yield strength of the alloy increased significantly by around 36% compared with that in as-extruded condition, which should be attributed to the precipitation strengthening of β' phase.  相似文献   

6.
Microstructure and mechanical properties of Mg-10Gd-3.8Y-xZn-0.5Zr (x?=?0, 1, 3?wt.%) alloys during extrusion and following isothermal aging at 200?°C were investigated using digital microhardness testing, mechanical testing, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray diffraction (XRD). The results showed that Zn can refine grains of the alloy, and improved mechanical properties of the as-extruded alloys. In T5 (peak-aging) condition, the average grains of the alloy without Zn addition were about 20.10???m; the average grains of the alloys with 1?wt.% Zn addition and 3?wt.% Zn addition were about 15.35 and 10.04???m, respectively. For the alloy with 1?wt.% Zn addition in as-extruded and peak-aged states, the values of tensile strength reached 345 and 429?MPa, yield strength reached 260 and 342?MPa, as well as ductility rate reached 10.8 and 5.7%, respectively, exhibiting superior mechanical properties.  相似文献   

7.
The microstructure and mechanical properties of as-cast and as-extruded Mg-Zn-Y alloy (Mg-11 %Zn- 0.9%Y, mass fraction) containing Mg3 YZn6 quasicrystal were studied. The eutectic icosahedral quasicrystal phase (I-phase) is broken and almost distributes along the extrusion direction, and fine I-phase with nano-size is precipitated during the extrusion. The a-Mg matrix grains are refined due to recrystallization occuring during the hot extrusion. Some {1012} twins are observed in the extruded ZW1101 alloy. And {0002}(1010) fiber texture is formed in matrix alloys after hot extrusion. The extruded alloy exhibits high strength in combination with large elongation at room temperature. The strengthening mechanism of the as-extruded alloy was discussed.  相似文献   

8.
The effects of Sn addition on the microstructure of as-cast and as-extruded Mg–9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg–9Li–xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg–9Li–5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship. Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg–9Li–5Sn alloy possesses the lowest grain size of 45.9 μm.  相似文献   

9.
Tungsten heavy alloys (WHAs) with three different compositions (90W-7Ni-3Fe, 93W-4.9Ni-2.1Fe and 95W-3.5Ni-1.5Fe, wt.%) were heavily deformed by one-pass rapid hot extrusion at 1100 °C with an extrusion speed of ~ 100 mm/s and an extrusion ratio of ~ 3.33:1. The influence of tungsten content on the microstructure and tensile fracture characteristics of the as-extruded alloys was investigated in detail. The results show that the tungsten particles in the as-extruded 95W have the largest shape factor compared to the as-extruded 90W and 93W alloys and this implies that the tungsten particles in the as-extruded 95W alloy were subjected to the heaviest plastic deformation. In addition, ultimate tensile strength (UTS) and hardness (HRC) are significantly improved after rapid hot extrusion. The as-extruded 95W alloy processes the highest strength (1455 MPa) and hardness (HRC40) but the lowest elongation (5%), followed by the as-extruded 93W (UTS1390MPa; HRC39; 7%) and 90W alloys (UTS1260MPa; HRC36; 10%). The fracture morphology shows the distinct fracture features between the as-sintered alloys and the as-extruded alloys. For the as-sintered alloys, the fracture modes are various while transgranular cleavage of tungsten particles is the main characteristic in the as-extruded alloy. Meanwhile, the fracture modes of the three as-extruded alloys vary slightly with the tungsten content. TEM bright field images indicate that many lath-like subgrains with the width of 150-500 nm are present in the three as-extruded alloys, particularly in the as-extruded 93W and 95W alloys. Furthermore, the dislocations are absent in the γ-(Ni, Fe) phase. This means that dynamic recovery-recrystallization process took place during rapid hot extrusion.  相似文献   

10.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

11.
Microstructures and tensile mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr alloy were systematically studied. Four phases were found in the as-cast specimen: α-Mg, Mg3(GdYZn), Mg12(GdY)Zn and Mg24(GdYZn)5. The long-period stacking order (LPSO) structure is found, which is the phase of Mg12(GdY)Zn. The LPSO structure has two existing forms: lamellar structure in the inner grains and block-like structure at grain boundaries. 6H-type LPSO structure with a stacking sequence of ABCBCB′ is defined in homogenized specimen, where A and B′ layers are significantly enriched by Gd, Y and Zn. The ageing hardening behavior of as-extruded specimens at 200 °C has been investigated. The ultimate tensile strengths of the as-extruded and peak-aged alloys are 360 MPa and 432 MPa, and the elongations are 18% and 5% respectively. The effective strengthening models have been considered to predict the strength. The results suggested that the sub-micron metastable β′ phase was the main strengthening factor of the peak-aged alloy.  相似文献   

12.
ZM6 magnesium alloy was prepared by solid recycling process. Effect of heat treatment on microstructure and mechanical properties of the alloy was investigated. Cold pressing was employed to prepare extrusion billets of ZM6 chips, then the billets were hot extruded at 773 K with an extrusion ratio of 25:1. During hot extrusion, the grains refined and the particles were broken. The peak-aging materials showed fine plate-shaped β′ precipitates. The ultimate tensile strength and elongation to failure of as-extruded rods was 232.2 MPa and 23%, respectively. After T5 and T6 heat-treatment, obvious improvement of the tensile strength was obtained because of dispersive particles or fine precipitates. The morphology of the fracture surfaces was examined by employing scanning electron microscope.  相似文献   

13.
The effects of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg−8Li−3Al− (1,2,3)Sn (wt.%) alloys were investigated by X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and tensile test. It is found that, as-cast Mg−8Li−3Al−(1,2,3)Sn alloys consist of α-Mg+β-Li duplex matrix, MgLiAl2 and Li2MgSn phases. Increasing Sn content leads to grain refinement of α-Mg dendrites and increase in content of Li2MgSn phase. During hot extrusion, complete dynamic recrystallization (DRX) takes place in β-Li phase while incomplete DRX takes place in α-Mg phase. As Sn content is increased, the volume fraction of DRXed α-Mg grains is increased and the average grain size of DRXed α-Mg grains is decreased. Increasing Sn content is beneficial to strength but harmful to ductility for as-cast Mg−8Li−3Al−(1,2,3)Sn alloys. Tensile properties of Mg−8Li−3Al− (1,2,3)Sn alloys are improved significantly via hot extrusion and Mg−8Li−3Al−2Sn alloy exhibits the best tensile properties.  相似文献   

14.
A novel extrusion?shearing (ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg?3Zn?0.6Ca?0.6Zr (ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle (α) of 90°, extrusion section height (h) of 15 mm and inner fillet radius (r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively.  相似文献   

15.
分析了铸态和挤压态ZK60?xGd(x=0~4)合金的组织和相组成,测试了其拉伸力学性能。结果表明,随着Gd含量的增加,铸态组织逐渐细化,Mg?Zn?Gd新相逐渐增多,而MgZn2相逐渐减少直至消失,第二相趋于连续网状分布于晶界处;当 Gd 含量不超过2.98%时,铸态室温拉伸力学性能稍降低。经挤压比λ=40和挤压温度T=593 K的挤压后,组织显著细化,平均晶粒尺寸逐渐减至ZK60?2.98Gd合金的2μm,破碎的第二相沿着挤压方向呈带状分布;挤压态的拉伸力学性能均显著提高:298和473 K时的抗拉强度分别从ZK60合金的355和120 MPa逐渐提高至ZK60?2.98Gd合金的380和164 MPa。挤压态拉伸断口呈现典型的韧性断裂特征。  相似文献   

16.
Mg–1Mn–0.5Al–0.5Ca–0.5Zn (wt.%) alloy was fabricated by conventional extrusion at 673 K with an extrusion ratio of 25:1, followed by aging at 473 K. The microstructure was characterized by scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. The mechanical properties were determined by the tensile test. The peak-aged sample shows fine recrystallized grains with an average grain size of 1.7 μm. Area fraction of Al–Ca particles in the alloy increases significantly after peak aging. Meanwhile, both 〈a〉 and 〈c+a〉 dislocations were observed to remain in the alloy after hot extrusion. Thus, the peak-aged sample exhibits simultaneously high strength and good ductility with the ultimate tensile stress, tensile yield stress, and tension fracture elongation of 320 MPa, 314 MPa, and 19.0%, respectively.  相似文献   

17.
The microstructure, mechanical properties and corrosion behavior of Mg–2 Zn–0.6 Zr alloy under the as-cast and asextruded conditions were investigated. Microstructure analysis indicated the remarkable grain refinement by extrusion, as well as notable reductions in volume fraction and size of precipitate phases. As compared with the as-cast alloy, the asextruded alloy exhibited better mechanical performance, especially in yield strength which was promoted from 51 to 194 MPa. Refined grains, dispersive precipitate phases and texture were thought to be the main factors affecting the improved performance in strength. The electrochemical measurement and immersion test revealed the corrosion rate of Mg–2 Zn–0.6 Zr alloy by extrusion decreased from 1.68 to 0.32 mm/year. The reasons for the enhanced corrosion resistance were mainly attributed to the decreased volume fraction and Volta potential of the precipitate phases, the refinement of the grain size, as well as the formation of more protective corrosion film.  相似文献   

18.
挤压变形态Mg-5Li-3Al-2Zn-xY合金的显微组织和力学性能   总被引:1,自引:0,他引:1  
利用OM,XRD,SEM等方法研究Mg-5Li-3Al-2Zn-xY合金经过挤压后的显微组织和力学性能。结果表明:合金在挤压过程中发生了动态再结晶,出现了大量等轴晶,晶粒明显细化;合金中AlLi相被挤碎,并呈现出沿着挤压方向分布;当Y含量增加到2.0%(质量分数)后,AlLi相消失;挤压后合金的抗拉强度最高为326.3MPa。细晶强化和第二相强化是提高合金抗拉强度的2个主要因素,Al2Y含量,尺寸及分布决定着第二相强化作用的强弱。  相似文献   

19.
变形态Mg-Nd合金的组织转变和拉伸性能特征   总被引:4,自引:0,他引:4  
研究不同变形条件对Mg-2.2Nd-0.5Zn-0.5Zr合金室温拉伸性能和组织的影响.经过不同条件的热挤压变形后,该合金的强度和延性都有不同程度的增加,屈强比从0.58提高到0.87左右.固定变形温度时,强度随变形速率增大而降低,延性反之.固定变形速率时,升高变形温度则强度降低,延性增加.弥散于晶界的Mg9Nd化合物细化了晶粒.变形态Mg-Nd合金的高温超塑拉伸研究发现,375℃是该合金的最佳超塑变形温度,应变速率在1×10-2s-1时,延伸率达到329%;当变形速率提高到2×10-2s-1时,该合金的延伸率仍可达到213%.分析不同真应变下的组织发现,在变形初期发生动态再结晶,晶粒得到破碎而变得细小,随着变形程度的增加,晶粒长大程度较小.在变形后的断口形貌中发现,Mg-Nd合金的超塑变形机制为晶界滑移控制下的孔洞连接协调机制.  相似文献   

20.
The effects of extrusion and heat treatments on the microstructure and mechanical properties of Mg–8Zn–1Al–0.5Cu– 0.5Mn magnesium alloy were investigated. Bimodal microstructure is formed in this alloy when it is extruded at 230 and 260 °C, and complete DRX occurs at the extruding temperature of 290 °C. The basal texture of as-extruded alloys is reduced gradually with increasing extrusion temperature due to the larger volume fraction of recrystallized structure at higher temperatures. For the alloy extruded at 290 °C, four different heat treatments routes were investigated. After solution + aging treatments, the grains sizes become larger. Finer and far more densely dispersed precipitates are found in the alloy with solution + double-aging treatments compared with alloy with solution + single-aging treatment. Tensile properties are enhanced remarkably by solution + double-aging treatment with the yield strength, tensile strength and elongation being 298 MPa, 348 MPa and 18%, respectively. This is attributed to the combined effects of fine dynamically recrystallized grains and the uniformly distributed finer precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号