首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the structural, optical absorption, photoluminescence (PL) and decay spectral properties of Dy~(3+)ions doped zinc lead alumino borate (ZPAB) glasses to elucidate their possible usage in photonic devices such as w-LEDs and lasers. A broad hump shown by the XRD spectrum recorded for an un-doped ZPAB glass confirms its non-crystalline nature. The Judd-Ofelt (J-O) intensity parameter evaluated from the measured oscillator strengths of the absorption spectral features were used to estimate various radiative parameters and also to understand the nature of bonding between Dy~(3+)ions and oxygen ligands. Under 350 nm excitation, the as-prepared glasses are exhibiting two emission bands~4F_(9/2)→~6H_(15/2)(blue),and~4F_(9/2)→~6H_(13/2)(yellow) at 483 and 575 nm,respectively. From the PL spectra,the Y/B ratio values, CIE chromaticity color coordinates and color correlated temperature (CCT) were evaluated. The experimental lifetimes measured from the decay profiles are decreasing with increase in Dy~(3+)ions concentration in these glasses which may be attributed to the cross-relaxation and nonradiative multiphonon relaxation process. Decay profiles observed for higher concentration were well fitted to Inokuti-Hirayama (I-H) model to understand the energy transfer process and subsequent decrease in experimental lifetimes. The higher values of radiative parameters, emission cross-sections,quantum efficiency, optical gain and gain band width suggest the suitability of 0.5 mol%of Dy~(3+) ions in these ZPAB glasses for the photonic device application.  相似文献   

2.
Trivalent dysprosium(Dy~(3+)) activated nanocrystalline yttrium vanadate(YVO_4) phosphor was synthesized via co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), optical absorption and photo luminescence(PL) techniques. The XRD patterns reveal the tetragonal crystalline phase. SEM images reveal that Dy doped YVO_4 nanocrystals are agglomerated. EDAX confirms the formation of YVO_4:Dy. FTIR spectrum shows two strong absorption bands at 459 and 761 cm~(-1). Optical absorption spectrum showed the surface defects in the as-prepared samples. The PL emission spectrum shows two characteristic emission bands at 485 and 575 nm. The strong yellow emission peak at 575 nm is assigned to ~4 F_(9/2)→~6 H_(13/2) hyper sensitive transition of Dy~(3+) ions, Study of CIE chromaticity diagram indicates the suitability of the phosphor for the development of yellow-green LEDs.  相似文献   

3.
Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)WO_4 phosphors were synthesized by a low temperature combustion method. The structures of the samples were SrWO_4 phase and were identified by X-ray diffraction. The surface topographies of Ba_(0.05)Sr_(0.91)WO_4:0.01 Tm~(3+) 0.03 Dy~(3+) were tested by scanning electron microscopy. The particles are ellipsoid, and their average diameter is approximately 0.5 μm. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Tm~(3+) show a peak at 454 nm which belongs to the ~3 H_6→~1 D_2 transition of Tm~(3+), and the optimum doping concentration of Tm~(3+) ions was 0.01. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Dy~(3+) consist of the ~4 F_(9/2)→~6 H_(13/2) dominant transition located at 573 nm, the weaker ~4 F_(9/_2→~6 H_(15/2) transition located at 478 and 485 nm. and the weakest ~4 F_(9/2)→~6 H_(11/2) transition located at660 nm, and the optimum doping concentration of Dy~(3+) ions was 0.05. A white light is achieved from Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)MoO_4 crystals excited at 352-366 nm. With the doping concentration of Tm~(3+) fixed at 0.01, the luminescence of Ba_(0.05)Sr_(0.95)MoO_4:Tm~(3+)Dy~(3+) is closest to standard white-light emissions when the concentration of Dy~(3+) is 0.03; the chromaticity coordinates are(0.321,0.347), and the color temperature is 6000 K.  相似文献   

4.
Lead phosphate glasses singly doped with Dy3+ ions were studied. The samples were prepared in a glove box in order to eliminate hydroxyl groups. Local structures were examined using FT-IR. Excitation and luminescence spectra for Dy3+ ions in investigated lead phosphate glasses were registered. Luminescence intensity ratio Y/B related to 4F9/2→6HJ/2(where J=15, 13) transitions was determined and luminescence lifetime(τm) for the 4F9/2 state of Dy3+ ions were also measured.  相似文献   

5.
Latent fingerprints (LFPs) are the major physical evidences for the identification of individuals during crime spot investigation. Till date, numerous methods were followed to visualize LFPs. However, simple, accurate, and cost-effective method has wide scope in advanced forensic field. In our work, Ca2SiO4:Dy3+ nanopowders (NPs) were fabricated via solution combustion route. The optimized sample was employed for the visualization of overlapped LFPs by the cost effective powder dusting method. The obtained results reveals the complete three levels of ridge characteristics with high sensitivity, reproducibility, selectivity, and reliability on various complex surfaces. The photoluminescence (PL) spectra consist of intense peaks at ~ 480 and 574 nm owing to 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 4f transitions of Dy3+ ions, respectively. The photometric properties confirm that the samples exhibit intense white emission with high color purity. Therefore, the prepared NPs could be a definitive choice as an advanced luminescent NPs for forensic, solid state lighting and portable FED devices.  相似文献   

6.
Dy3+ doped boroaluminasilicate glasses were synthesized in air atmosphere with conventional high temperature process. Optical absorption, emission and excitation spectra of the glasses were measured. Effect of concentration quenching on the lifetime and fluorescence yield was discussed. The pilot study on the changes in emission spectra of Dy3+/Tb3+, Dy3+/Pr3+ co-doped glasses was carried out. 451 nm was found to be the ideal wavelength among five excitation wavelength in the UV-Vis region from excitation spectra. The fluorescence spectrum of the sample had three major emission bands at 482, 575 and 662 nm, respectively. The strongest emission band peak was at 575 nm. With an increase in Dy3+ concentration beyond a particular value (1%), the concentration quenching phenomenon occurred. The lifetime of 4F9/2 level reduced from 0.9 ms to 0.5 ms when Dy3+ concentration increased from 0.2% to 4%. The energy transfer from Dy3+ to Tb3+ and from Pr3+ to Dy3+ were detected in the co-doped glasses.  相似文献   

7.
The influence of different solvents and metal ions (Li+, Ba2+, Bi3+) on the crystallization behaviour, morphology and enhancement in photoluminescence intensity of Dy3+ doped CePO4 were investigated. Highly crystalline luminescent nanophosphors of CePO4:Dy3+ re-dispersible in polar solvents were successfully prepared via a simple polyol route at 140 ℃. As-prepared Dy3+ doped CePO4 nanophos-phors prepared in EG and DMF appeared to have crystalline monoclinic phase but exhibited hexagonal phase when prepared in water and water mixed solvents. The hexagonal phase transformed to monoclinic phase after heating at 900 ℃. TEM study revealed different shapes of the synthesized nanophosphors with change of solvents. The luminescence intensity of 4F9/2→6H15/2 at 478 nm (blue) was found to be more prominent than 4F9/2→6H13/2 at 572 nm (yellow). The introduction of metal ions (Li+, Ba2+ and Bi3+) in CePO4:Dy3+ led to considerable lumi-nescent enhancement. The nanophosphors were subsequently incorporated in polymer films of PVA which showed the characteristic emissions of Dy3+. It also served as an effective method to improve the performance of polymer materials and brought about novel properties in them.  相似文献   

8.
Heavy metal glasses doubly doped with Yb3+ and Ln3+ ions(Ln=Er or Tm) were studied. Glass host matrices were limited to lead borate glass and lead germanate glass. Efficient resonant(Yb3+-Er3+) and non-resonant(Yb3+-Tm3+) energy transfer was observed for the studied systems. Near-infrared luminescence spectra at 1.53 μm(Er3+) and 1.9 μm(Tm3+) were detected under excitation of Yb3+ by 975 nm diode laser line. They corresponded to 4I13/2→4I15/2(Er3+) and 3F4→3H6(Tm3+) transitions of rare earth ions, respectively. The unusual large spectral linewidth nearly close to 110 nm for 4I13/2→4I15/2 transition of Er3+ ions in lead borate glass was obtained, whereas long-lived near-infrared luminescence at 1.53 μm was detected in lead germanate glass. Quite different situation was observed for Yb3+-Tm3+ doubly doped glasses. In contrast to lead borate glass, near-infrared(3F4→3H6) luminescence spectra were registered for Tm3+ ions in lead germanate glasses, only. These phenomena strongly depended on stretching vibrations of glass host, which was confirmed by FT-IR spectroscopy.  相似文献   

9.
Tellurite glasses were generally applied in rare earth optical materials due to their excellent physical and chemical properties. In this study, novel tellurite glasses composed of TeO2-TiO2-La2O3 were prepared by conventional melting-quenching method. Some basic physical parameters such as density, refractive indices, transition temperature and crystalline temperature were measured. The structure was analyzed by Raman spectra. The absorption, upconversion and fluorescence spectra were measured by UV-Vis-NIR spectrophotometer and spectrofluorimeter. Under 980 nm laser excitation, upconversion luminescence centered at 531, 545 and 657 nm corresponding to the transition 4H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively, were observed. The effects of TiO2 concentration on structure and upconversion luminescence intensity were discussed. The result indicated that the upconversion intensity increased as the phonon concentration decreased. The fluorescence properties of Er3+ doped glass were also studied. The dominant peak centered at 1531 nm and full width at half maximum (FWHM) was 64 nm. The Er3+ stimulated emission cross-section was calculated on the basis of McCumber theory. The possible mechanism of upconvesion and fluorescence were proposed.  相似文献   

10.
In this work we repo rt on structural and spect roscopic properties of Yb3+doped and Pr~(3+)/Yb~(3+)co-doped TeO_2-Bi_2 O_3-ZnO-Li_2 O-Nb_2 O_5(TBZLN) tellurite glasses.Bending and stretching modes of TeO_2 and Te-OH bond(strong and weak) were analysed from the deconvolution of observed Raman and FT-IR spectra.Based on the absorption measurements,the energy bands of Yb~(3+)and Pr~(3+)ions are assigned.The spectroscopic properties for the radiative transitions of Yb~(3+)and Pr~(3+)ions were reported using McCumber and Judd-Ofelt theories.Visible emission bands originating from ~3 P_1 and ~3 P_0 to lower lying levels of Pr~(3+)were registered under 447 nm excitation.The emission band around 1334 nm assigned to the Pr~3:~1 G_4→~3 H_5 was observed when excited at 980 nm.The stimulated emission cross-section(σ_(emi)(λ))and effective linewidth(Δλ_(eff)) for the ~3 P_1→~3 H_6,~3 P_1→~3 H_5,~3 P_0→~3 H_6,~3 P_0→~3 F_2,~3 P_1→~3 F_3,~3 P_1→~3 F_4,~3 P_0→~3 F_4 and ~1 G_4→~3 H_5 transitions of Pr~(3+)are reported.Upconversion luminescence in Pr~(3+)/Yb~(3+)codoped glass upon 980 nm excitation was measured.Possible resonant transfer processes between Yb~(3+)and Pr~(3+)ions are presented and discussed.The chromaticity co-ordinates were also evaluated from the visible emission spectra showing that Pr~(3+)/Yb~(3+)co-doped glass may be suitable for the development of yellow-orange(λ_(exc)=447 nm) and near white light(λ_(exc)=980 nm) emitting devices in photonics.  相似文献   

11.
In this article upconversion luminescence of silver nanoparticles(AgNPs) coated NaYF_4:Er~(3+)/Yb~(3+)phosphor nano-particles was investigated.The prepared samples were characterized through various techniques.The surface plasmon band is observed for prepared AgNPs by analyzing UV-vis measurements and is used to enhance the upconversion emission.From the upconversion measurement the emission bands are observed at 522,546,and 656 nm corresponding to the ~2 H_(11/2)→ 4~1_(15/2),~4 S_(3/2)→~4 I_(15/2)and ~4 F_(9/2)→~4 I_(15/2) levels,respectively.The upconversion emission intensity of the above bands is found to enhance for sample containing 1 mmol AgNPs.Decay time of ~4 S_(3/2) and 4~F_(9/2) levels is found to decrease on coating of AgNPs and hence intensity enhancement is assumed due to the surface plasmon resonance(SPR) effect.  相似文献   

12.
Er~(3+)-modified 0.68 Pb(Mg_(1/3)Nb_(2/3))O_3-0.32 PbTiO_3(PMN-32 PT) single crystals were grown by using the flux method. The growth mechanism of the crystal and influences of Er~(3+) ions on phase structure,electrical and optical properties were investigated. Results reveal that the crystals are still pure perovskite structure with Er3+ ions doping, but lattice enlarges slightly. The coercive electric field is increased from 4.83 to 6.37 kV/cm for [100]-oriented crystals comparing to undoped PMN-32 PT single crystals.Moreover, the crystal exhibits upconversion emission properties. Green(531 and 552 nm) and red(670 nm) emission bands are recorded under the excitation of 980 nm diode laser, which correspond to the ~2 H_(11/2)→~4 I_(15/2), ~4 S_(3/2)→~4 I_(15/2) and ~4 F_(9/2)→~4 I_(15/2) transitions of Er~(3+) ions. Our results show the feasibility of using this crystal in photoelectric multifunctional devices.  相似文献   

13.
Novel yellow-emitting phosphors of Dy~(3+)-doped double perovskite Ca_2 MgTeO_6 were synthesized by using a conventional high-temperature solid-state reaction.The phase purity,particle morphology,size distribution,elemental composition,luminescence properties,and luminescence decay curves of the resulting products were then analyzed in detail.The Ca2 MgTeO_6:Dy~(3+),Na~+ phosphors show three emission peaks after near-ultraviolet excitation at 350 nm,which correspond to ~4 F_(9/2)→~6 H_(11/2),~4 F_(9/2)→~6 H_(13/2),and ~4 F_(9/2)→~6 H_(13/2) transitions,respectively.Among them,the strongest peak is observed at 573 nm.The best doping content of Dy~(3+)in Ca_2 MgTeO_6:xDy~(3+),xNa~+ phosphors is x=5 mol%.The calculated critical distance of energy transfer between Dy~(3+) ions is 1.6 nm.Luminescence quenching is confirmed to be due to dipole-dipole interactions among Dy~(3+) ions.The phosphors show excellent thermal stability with high activation energy(0.27 eV).The Commission Internationale de l'Eclairage(CIE) chromaticity coordinates of the Ca_2 MgTeO_6 Dy~(3+),Na~+ phosphors are located in the yellow region.White light-emitting diodes(w-LEDs) were fabricated with a high color rendering index(R_a) of 88 and a good correlated color temperature(CCT) of 5440 K.All observed properties indicate that Ca_2 MgTeO_6:Dy~(3+),Na~+ phosphors have potential applications in display and photonic devices.  相似文献   

14.
Effect of Gd2O3 addition on optical properties of 27.5 Li2O-72.5 B2O3 glass systems was studied. Density, differential thermal analysis(DTA), optical absorption spectra and luminescence technique were used to characterize the prepared glasses. Emission spectra showed two band 6P7/2→8S7/2(311.5 nm) and 6P5/2→8S7/2(305 nm) under the excitation of 274 nm. The intense emission at 311.5 nm suggested that these glasses could be useful as source of narrowband UV light.  相似文献   

15.
Europium(Eu~(3+)) doped glasses of chemical compositions(55-x)B_2O_3:10 SiO_2:25 Y_2O_3:10CaO:xEu_2O_3,where x denotes mol% and ranges 0≤ x ≤ 2.5, were synthesized by adopting conventional melt quenching technique, Physical properties like density, molar volume, polaron radius, inter-ionic distance and field strength of the glass samples were investigated to assess the impact of Eu_2O_3. Optical and luminescence properties of the glasses were characterized with optical absorption, photoluminescence,X-ray induced emission spectra, temperature dependence emission spectra and decay times. Judd-Ofelt(JO) intensity parameters(Ω_λ) of the glasses were evaluated based on the absorption spectrum of 0.5 mol%. JO parameters, calculated from absorption spectra with thermal corrections on oscillator strength, were used to evaluate radiative properties such as radiative transition probability(A_R),branching ratio(β_R), stimulated cross section emission(σ) and radiative lifetime(τ_R) for ~5D_0→~7 F_J(J = 0,1,2,3 and 4) transitions. The decay rate of ~5D_0 fluorescent level for all the glass samples was single exponential. Lifetimes of the ~5D_0 level were decreased with increasing concentrations of Eu~(3+)ions from 0.05 mol% to 2.5 mol% which might be due to energy transfer through cross-relaxation in the glasses. The chromaticity coordinates(x, y) were similar for all BSYCaEu glasses and were located at the red region of CIE 1931 color chromaticity diagram. Hence, these results confirm that the Eu~(3+) doped BSYCaEu glasses could be useful for visible red lasers and glass scintillation applications.  相似文献   

16.
The intensity of the visible up-conversion luminescence could be limited by a saturation effect produced by increased pump power. Visible up-conversion luminescence was obtained in erbium doped,silica-titania sol gel powders under dynamical pumping at 1532 nm. The saturation effect was studied for erbium radiative transitions 2H9/2→4I15/2 (410 nm),2H11/2→4I15/2 (530 nm),4S3/2→4I15/2 (550 nm),2H9/2→4I13/2 (567 nm) and 4F9/2→4I15/2 (675 nm). The recorded up-conversion luminescence decreased when increasing ex...  相似文献   

17.
Preparation using melt quenching technique and optical characterizations of Nd~(3+) doped Zn-Na phosphate glasses are presented. The structure of the present glasses was studied using X-ray diffraction and FT-IR spectroscopy. UV-vis spectra of the present glasses were analyzed at different concentrations of Nd_2 O_3. The effect of neodymium concentration on the density and energy band gap was investigated. The density of the present glasses slightly increases with the increasing of Nd_2 O_3. A small variation of energy band gap with the increasing of neodymium content is observed as well, while E_g values decrease with the increase of Nd_2 O_3 content. The E_g values lie between 4.36 and 4.69 eV. Based on the measured optical spectra, Judd-Ofelt theory was used to determine the optical parameters such as line strengths, optical intensity parameters(Ω_t), transition probabilities, and transition lifetimes. Hypersensitive transitions were identified in the absorption spectrum, the greatest line strengths are recorded at the transitions~2 G_(7/2)+ ~4 G_(5/2), ~4 S_(3/2) + ~4 F_(7/2) and ~4 D_(1/2) + ~4 D_(3/2)+ ~4 D_(5/2) + ~2 I_(11/2) with wavelengths of 580, 475 and 355 nm,respectively. Lifetimes of the important ~4 F_(3/2) laser-level were determined; which show decreasing trend with the increasing of Nd_2 O_3 content and are found to be between 0.838 and 1.595 ms. The uncertainty of the present results was estimated. The RMS deviations were determined, which show lower values than those in the literature.  相似文献   

18.
The powder samples of Ca9Sc(PO4)7:xDy^(3+)white emitting phosphors were prepared via a solid state reaction technique.The Ca9Sc(PO4)7:Dy3+samples were researched by using the GSAS Rietveld refinement and X-ray diffraction(XRD) methods,and SEM images and elemental maps were recorded.Under 350 nm excitatio n,the emission spectra of Ca9Sc(PO4)7:xDy3+samples have two obvious peaks and one weak peak at 484,572 and660 nm,corresponding to the characteristic electron transitions of(4F9/26H15/2,blue),(4F9/26H13/2,yellow) and(4F9/2→ 6 H11/2,red),respectively.The concentration quenching effect,decay lifetime and thermal quenching of the as-synthesized Ca9Sc(PO4)7:Dy3+samples were researched systematically.The Ca9Sc(PO4)7:0.02 Dy3+phosphor possesses a good thermal stability,of which the emission intensity at 423 K can maintain 79% of the initial value(273 K).In addition,through the study of the chro maticity coordinates of the Ca9Sc(PO4)7:0.02 Dy3+phosphor,it is found that it is located in the white region,and the Commission Internationalede L’Eclairage(CIE) chromaticity coordinates are(0.339,0.389),The above results show that Ca9Sc(PO4)7:xDy3+phosphors can be excellent candidate material for applications in NUV-excited white LEDs.  相似文献   

19.
The spectroscopic properties of lithium borate glasses as a function of Nd3+ ions concentration were reported.Optical absorption spectra of these glasses showed a number of absorption bands in ultra violet and visible region.Optical absorption edge was found to shift towards the longer wavelength(red shift) with increase in Nd2O3.Luminescence spectra revealed three major bands at 902, 1063 and 1334 nm which was due to 4F3/2→4I9/2, 11/2 &13/2 transitions of Nd3+ ions.Luminescence intensity was maximum for 1 mol.% Nd2O3 and further increase in Nd2O3 resulted in luminescence quenching.The luminescence quenching behavior at higher concentration of Nd2O3 was attributed to the Nd3+-Nd3+ interaction in the glass matrix.An absorption and emission property of these glasses suggested that these glasses could be useful for 1.06 μm infrared laser applications.  相似文献   

20.
The spectroscopic properties of a series of Dy~(3+) single-doped and Dy~(3+)/Nd~(3+),Dy~(3+)/Tb~(3+),and Dy~(3+)/Tm~(3+)co-doped YAlO_3(yttrium aluminum perovskite,YAP) phosphors were investigated and compared through the measurements of optical absorption,emission spectra,and fluorescence decay curves.For the Dy~(3+) ion single-doped samples,the intensity of each absorption band increases with an increment in Dy~(3+) ion doping concentration,and the identified strong absorption peak at 447 nm indicates that Dy~(3+):YAP phosphors are suitable to be pumped by a blue laser diode(LD).For all co-doped samples,absorption peaks of Dy~(3+) ion along with some of the absorption bands of Nd~(3+),Tb~(3+),and Tm~(3+) ions are observed.Under 351 and 447 nm excitation,a prominent emission peak at 572 nm was obtained in all the samples,corresponding to Dy~(3+):~4 F_(9/2)→~6 H_(13/2) transition.Here,2 at% Dy~(3+):YAP phosphor exhibits the highest yellow emission intensity under 447 nm pumping.Among the three kinds of Dy~(3+) co-doped phosphors,Dy~(3+)/Tb~(3+):YAP phosphor possesses the dominant yellow emission.The fluorescence decay curves show exponential behaviour and are fitted well.The Commission International de L'Eclairage(CIE)chromaticity coordinates were calculated following the respective emission spectra,and it is found that all the coordinates locate in the yellow region.The energy transfer(ET) processes were investigated and the concentration quenching mechanism was discussed.The obtained results suggest that Dy~(3+)-activated YAP phosphors are good candidates for yellow LED applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号