首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
A series of Ln3+ (Ln3+ = Er3+/Dy3+) ions doped Na2NbAlO5 (NNAO) phosphors were synthesized by solid-state method. The Er3+ and Dy3+ ions doped phosphors were characterized by XRD, photoluminescence (PL) and decay profiles. The Ln3+-doped samples are consistent with the pure NNAO phase which is analyzed by the X-ray diffraction result. The PL graphs show that the intensity of luminescence increases with the increasing doping concentrations up to their critical certain values and then decreases at higher concentrations due to the concentration quenching effect of Er3+/Dy3+ ions. The energy level diagrams containing the positions of 4f and 5d energy levels of Er3+ and Dy3+ ions have been established and studied. In addition, under the ultraviolet light, the prepared NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors show the characteristic green (Er3+), cyan (Dy3+) emission, respectively. Under the excitation of 365 nm, the quantum efficiencies of NNAO:0.01Er3+ and NNAO:0.03Dy3+ phosphors are measured to be 61.7% and 72.2%, respectively. The obtained results indicate that the new NNAO:xLn3+ (Ln3+ = Er3+/Dy3+) phosphors are promising applications in white-light emitting diodes field.  相似文献   

2.
The influence of Dy2O3 doping on the properties of medium temperature sintering (Ba, Sr)TiO3 series capacitor ceramics was studied by single factor various amount method, and the law of the influence on the medium temperature sintering (Ba, Sr)TiO3 series capacitor ceramics was obtained. The dielectric materials used for multilayer ceramic capacitor was obtained, of which the dielectric constant was 1375, the dielectric loss was 0.0060, the density was 5.92 g·cm−3, the sintering temperature was less than 1150 °C, the capacitance temperature changing rate (ΔC/C) was less than ± 15%, the voltage withstand strength was more than 9.3 kV·mm−1, and the crystal grain size was about 1 μm. The surface morphology of the sample doped with various amount Dy2O3 was analyzed by scanning electron microscope (SEM). The results showed that doping Dy2O3 could form defect solid solution, stop grain growth, fine crystal grain, widen curie peak, obtaining high dielectric constant and low dielectric loss, capacitance temperature property was suited for X7R character, in the (Ba,Sr)TiO3 series ceramics. At the same time, the voltage withstand strength was enhanced greatly.  相似文献   

3.
This paper presents the structural, optical absorption, photoluminescence (PL) and decay spectral properties of Dy~(3+)ions doped zinc lead alumino borate (ZPAB) glasses to elucidate their possible usage in photonic devices such as w-LEDs and lasers. A broad hump shown by the XRD spectrum recorded for an un-doped ZPAB glass confirms its non-crystalline nature. The Judd-Ofelt (J-O) intensity parameter evaluated from the measured oscillator strengths of the absorption spectral features were used to estimate various radiative parameters and also to understand the nature of bonding between Dy~(3+)ions and oxygen ligands. Under 350 nm excitation, the as-prepared glasses are exhibiting two emission bands~4F_(9/2)→~6H_(15/2)(blue),and~4F_(9/2)→~6H_(13/2)(yellow) at 483 and 575 nm,respectively. From the PL spectra,the Y/B ratio values, CIE chromaticity color coordinates and color correlated temperature (CCT) were evaluated. The experimental lifetimes measured from the decay profiles are decreasing with increase in Dy~(3+)ions concentration in these glasses which may be attributed to the cross-relaxation and nonradiative multiphonon relaxation process. Decay profiles observed for higher concentration were well fitted to Inokuti-Hirayama (I-H) model to understand the energy transfer process and subsequent decrease in experimental lifetimes. The higher values of radiative parameters, emission cross-sections,quantum efficiency, optical gain and gain band width suggest the suitability of 0.5 mol%of Dy~(3+) ions in these ZPAB glasses for the photonic device application.  相似文献   

4.
Intense visible emissions from dysprosium(Dy3+) ions doped glasses became prospective for diverse technological applications. In this paper, physical, optical and structural properties of magnesium borate glasses doped with varied concentrations of Dy_2 O_3 were examined. Such glasses were synthesised by melt quenching method and characterized at room temperature using several analytical techniques.Luminescence and absorption spectra(in the visible region) of as-quenched samples were used to evaluate the physical and optical properties. XRD pattern confims the amorphous state of as-quenched samples. The Fourier transform infrared(FTIR) spectra of glasses reveal various bonding vibrations assigned to different functional groups. UV-vis-NIR spectra disclose eight absorption bands accompanied by a band for hypersensitive transition positioned at 1260 nm(~6 H_(15/2)→~6 F_(11/2)). The values of direct and indirect optical energy band gap of the studied glasses are decreased with the increase of Dy~(3+) ion contents. The photoluminescence spectra of all glasses under the excitation of 380 nm display two prominent emission bands centred at 497 nm(~4 F_(9/2)→~6 H_(15/2), blue) and 587 nm(~4 F_(9/2) →~6 H_(13/2), green).The achieved intense luminescence from the proposed glass composition may be beneficial for solidstate laser applications.  相似文献   

5.
The influence of different solvents and metal ions (Li+, Ba2+, Bi3+) on the crystallization behaviour, morphology and enhancement in photoluminescence intensity of Dy3+ doped CePO4 were investigated. Highly crystalline luminescent nanophosphors of CePO4:Dy3+ re-dispersible in polar solvents were successfully prepared via a simple polyol route at 140 ℃. As-prepared Dy3+ doped CePO4 nanophos-phors prepared in EG and DMF appeared to have crystalline monoclinic phase but exhibited hexagonal phase when prepared in water and water mixed solvents. The hexagonal phase transformed to monoclinic phase after heating at 900 ℃. TEM study revealed different shapes of the synthesized nanophosphors with change of solvents. The luminescence intensity of 4F9/2→6H15/2 at 478 nm (blue) was found to be more prominent than 4F9/2→6H13/2 at 572 nm (yellow). The introduction of metal ions (Li+, Ba2+ and Bi3+) in CePO4:Dy3+ led to considerable lumi-nescent enhancement. The nanophosphors were subsequently incorporated in polymer films of PVA which showed the characteristic emissions of Dy3+. It also served as an effective method to improve the performance of polymer materials and brought about novel properties in them.  相似文献   

6.
Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)WO_4 phosphors were synthesized by a low temperature combustion method. The structures of the samples were SrWO_4 phase and were identified by X-ray diffraction. The surface topographies of Ba_(0.05)Sr_(0.91)WO_4:0.01 Tm~(3+) 0.03 Dy~(3+) were tested by scanning electron microscopy. The particles are ellipsoid, and their average diameter is approximately 0.5 μm. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Tm~(3+) show a peak at 454 nm which belongs to the ~3 H_6→~1 D_2 transition of Tm~(3+), and the optimum doping concentration of Tm~(3+) ions was 0.01. The emission spectra of Ba_(0.05)Sr_(0.95)WO_4:Dy~(3+) consist of the ~4 F_(9/2)→~6 H_(13/2) dominant transition located at 573 nm, the weaker ~4 F_(9/_2→~6 H_(15/2) transition located at 478 and 485 nm. and the weakest ~4 F_(9/2)→~6 H_(11/2) transition located at660 nm, and the optimum doping concentration of Dy~(3+) ions was 0.05. A white light is achieved from Tm~(3+) and Dy~(3+) co-doped Ba_(0.05)Sr_(0.95)MoO_4 crystals excited at 352-366 nm. With the doping concentration of Tm~(3+) fixed at 0.01, the luminescence of Ba_(0.05)Sr_(0.95)MoO_4:Tm~(3+)Dy~(3+) is closest to standard white-light emissions when the concentration of Dy~(3+) is 0.03; the chromaticity coordinates are(0.321,0.347), and the color temperature is 6000 K.  相似文献   

7.
Rare earth La Dy co-doped ZnO nanoparticles (Zn0.98La0.01Dy0.01O, Zn0.96La0.02Dy0.02O, Zn0.94La0.03Dy0.03O, and Zn0.92La0.04Dy0.04O) were synthesized by co-precipitation method at temperature of 500 °C for 2 h in air. The synthesized samples were characterized by powder X-ray diffraction (XRD), FE-SEM/EDS and UV–Visible spectrophotometer. The prepared nanoparticles exhibit a hexagonal wurtzite structure as observed from XRD measurements. It was observed that the La Dy co- doped ZnO nanoparticles (Zn0.98La0.01Dy0.01O, Zn0.96La0.02Dy0.02O, Zn0.94La0.03Dy0.03O, and Zn0.92La0.04Dy0.04O) exhibit higher optical absorbance spectrum at 400 nm to 800 nm wavelength due to its smaller crystal size (12.2 nm) as compared to the un- doped ZnO nanoparticles (253.1 nm). The photocatalytic activity of rare earth La Dy co- doped ZnO nanoparticles were studied by performing the decomposition of methylene blue dye solution under UV light irradiation within 0–4 h. The methylene blue dye solution was considerably photodegraded by Zn0.92La0.04Dy0.04O photocatalyst under UV light irradiation within 2–4 h to the efficiency of 96 %. The pseudo first order rate constant of the degradation was found to be 0.0264 S?1. The degradation mechanisms are discussed in this work.  相似文献   

8.
Trivalent dysprosium(Dy~(3+)) activated nanocrystalline yttrium vanadate(YVO_4) phosphor was synthesized via co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), optical absorption and photo luminescence(PL) techniques. The XRD patterns reveal the tetragonal crystalline phase. SEM images reveal that Dy doped YVO_4 nanocrystals are agglomerated. EDAX confirms the formation of YVO_4:Dy. FTIR spectrum shows two strong absorption bands at 459 and 761 cm~(-1). Optical absorption spectrum showed the surface defects in the as-prepared samples. The PL emission spectrum shows two characteristic emission bands at 485 and 575 nm. The strong yellow emission peak at 575 nm is assigned to ~4 F_(9/2)→~6 H_(13/2) hyper sensitive transition of Dy~(3+) ions, Study of CIE chromaticity diagram indicates the suitability of the phosphor for the development of yellow-green LEDs.  相似文献   

9.
In this paper,a Sr~(2+)and Dy~(3+)co-doped γ-Ce_2S_3 red pigment was synthesized via a combination of coprecipitation and sulfurization processes.Mixed oxide was prepared by presintering the coprecipitates,(Ce,Sr,Dy)CO_3,followed by high-temperature sulfurization under a CS_2 atmosphere.The effects of the sulfurization temperature,time,and doped proportion on the phase composition,color performance and temperature stability of γ-Ce_2S_3 were systematically studied.The results show that a stable γ-Ce_2S_3 red pigment can be obtained through Sr~(2+)and Dy~(3+)co-doping at 730℃ for 200 min.The diffraction peaks of all the samples shift to higher 2θ values with increasing doping proportion,indicating that part of the Dy~(3+)species enter the lattice and form a solid solution.The band gap of the samples remains practically constant at 2.01-2.04 eV,which causes their red color.The best red-color quality(L~*=37.13,a~*=34.77,b~*=29.44) is achieved when the pigment has a Dy~(3+)/Ce~(3+)molar ratio of 0.15,and the material maintains its excellent red color(L~*=31.49 a~*=30.94 b~*=25.33) after being heated at 410℃ for 30 min.  相似文献   

10.
PMMA matrices were doped with nano-crystalline neodymium oxides synthesized by thermal decomposition process. X-ray diffraction and high-resolution transmission electron microscopy measurements were carried out to investigate the structure, phase, and the morphology of the Nd_2O_3 nanocrystals and those embedded in the PMMA matrix. The average grain sizes were estimated 35 ± 6 nm and 46 ± 4 nm for non-annealed and annealed Nd_2O_3 particles, respectively. The grain size distributions(GSD) were calculated from the diffraction peaks of the annealed and non-annealed Nd_2O_3 powders and doped PMMA samples. The mass density, refractive index. UV-Visible absorption spectra were measured and the data were analyzed using the Judd-Ofelt approach to determine the oscillator strengths, the spontaneous emission probabilities and the branching ratios as a function of the nano-crystalline Nd_2O_3 content in the range of 0.1 wt.%-20 wt.% of MMA. Luminescence spectra upon 808 nm diode laser excitation were carried out in the wavelength range of 850-1550 nm at room temperature. The photoluminescence study has shown that the reasonably sharp emission peaks were observed upon heat treatment at 800 ℃ for 24 h for all concentrations of Nd_2O_3 nanopowders in PMMA. The infrared laser transition of Nd~(3+) ions at about 1.06 μm due to the ~4F_(3/2)→~4I_(11/2) transition was analyzed and discussed in Nd_2O_3 system for their possible applications in the photonic technology.  相似文献   

11.
This work described the preparation of dysprosium oxide, Dy2O3, nanoparticles using the homogeneous precipitation method. Dy3+ ions were precipitated using NaOH solution. The obtained product was filtered, dried, and then calcined for 1 h at the temperature range of 300–700 °C in static air. The calcination temperature of the Dy-precursor was chosen based on its decomposition as indicated by the TGA analysis. The crystalline structure and surface morphology of the calcined solids were studied by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). The obtained results revealed that Dy2O3 with crystallites size of 11–21 nm was formed at 500 °C. Such value increased to 25–37 nm for the sample calcined at 700 °C.  相似文献   

12.
A series of magnesium borate phosphors MgB4O7:Dy, MgB4O7:Mn and MgB4O7:Dy,Mn were prepared and their ther-moluminescence (TL) emission spectra were measured. TL emission bands in 480, 575 and 660 nm at 200 and 360 oC were observed in the MgB4O7:Dy due to the transitions of the trivalent rare earth ions Dy3+. The glow peaks of broad wavelength band around~580 nm at 180 and~290 oC were observed in MgB4O7:Mn due to the emission of Mn2+ions. The main glow peak of MgB4O7 co-doped with Dy and Mn appeared in 580 nm at~360 oC. When MgB4O7 was co-doped with Dy (0.5 mol.%) and different concentrations of Mn (0.01 mol.%-1.0 mol.%), the peak in 580 nm at 360 °C was intensified and broadened as the concentration of Mn increased, while the peaks in 480, 680 and 750 nm below 300 °C remained the characteristic emission of Dy3+and were reduced in intensity. The emission spectra of the MgB4O7:Dy,Mn phosphor showed that the competitive de-excitation processes between Dy3+and Mn2+existed and the energy transfer occurred from Dy3+to Mn2+. These results meant that rare earth and Mn ions in MgB4O7:Dy,Mn might cause the formation of defects complex that dominated the traps and recombination.  相似文献   

13.
Microwave dielectric ceramics of Ba[Zn(1?x)/3Ni x/3Nb2/3]O3 (BZNN, x = 0.0, 0.5, 0.6, 0.7, 0.8) were sintered at 1773 K (1500 °C) for 3 hours by the conventional solid-state reaction method. To clarify the relationship between dielectric properties and crystal structures, vibration spectra (Raman spectroscopy and Fourier transform far-infrared reflection spectroscopy (FTIR)) and X-ray diffraction (XRD) were employed to study Ba[Zn(1-x)/3Nix/3Nb2/3]O3 solid solutions. Crystal structures were determined as cubic perovskite structures, and no phase transition appears in substitution of Ni2+ to Zn2+ ions. Raman spectroscopy was used to discuss the correlation of dielectric properties with Raman shifts and full-width at half-maximum (FWHM) values, which indicate that dielectric properties are closely related to both FWHM values and A1g(Nb) mode shifts. FTIR spectra and imaginary parts of dielectric constants were calculated to obtain the correlation between polar phonon modes and dielectric properties with Ni2+ concentration.  相似文献   

14.
Dy~(3+)-doped glass-ceramics containing NaCaPO_4 crystals were successfully fabricated by heat treatment at base glass,and the luminescence properties were investigated for potential applications in radiation measurements.The photo luminescence(PL) excitation and emission spectra exhibit transitions related to Dy~(3+) ions corresponding to the strongest excitation and emission wavelengths at 351 and 575 nm,respectively.The CW-OSL properties as a function of dopant concentration,pre-heating temperature,pre-heating time and signal fading were investigated.The most appropriate Dy~(3+)ion concentration was found to be 0.25 mol%.The TL glow curves have a broad peak feature peaking at 195±5 ℃.The fading of the OSL signal would keep stable in five days with the intensity value of about 76.11%.The samples also exhibit good signal reusability and a broad linear dose response range(0.02-1000 Gy).  相似文献   

15.
Pure and rare-earth ion (Dy3+) doped TiO2 nanomaterials were prepared through a chemical co-precipitation method. The chemical composition, microstructure and optical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy and photoluminescence (PL). XPS analysis reveals that Dy3+ ions are preferentially occupied in the TiO2 crystallite lattices. Both the XRD and TEM analyses confirm that both the pure and Dy doped TiO2 are in pure anatase phase and in nano size range, respectively. Also it is found that the maximum solubility limit for Dy3+ ions is found to be 0.4% in TiO2 matrix, above which it occupies interstitials and/or crystallite surface of TiO2 nanocrystals. From the UV-Vis spectroscopy studies it is found that Dy doping induces blue shift in TiO2. From the PL analysis it is found that doping Dy3+ improves the luminescence behavior in comparison with the pure TiO2 nanoparticles. Overall, doping very low concentrations of Dy3+ greatly alters the structural morphology and directly increases the luminescence behavior of TiO2 suitable for advanced optoelectronic applications.  相似文献   

16.
The glass samples with composition 37.5PbO:37.5TiO2:22.5B2O3:2.5SiO2 were synthesized by conventional melt quenching technique. These glasses were converted to glass–ceramic by following the two stage heat treatment, by varying systematically the duration of heat treatment. The density, dielectric constant and dielectric loss of glass and glass–ceramic samples were measured. The density and dielectric constant of the glass–ceramic samples were observed to increase with the heat treatment duration up to 32 h. The glass–ceramic samples exhibited ferroelectric hysteresis due to the presence of PbTiO3 crystals as confirmed from XRD. From the results it can be concluded that 32 h heat treatment duration is optimum for getting PbTiO3 glass–ceramic. The high temperature ferroelectric hysteresis measurements have been carried out for the optimized (32 h) glass–ceramic sample. The exhibition of ferroelectric behaviour up to 250 °C indicates the possibility of utilization of this sample for high temperature transducer applications.  相似文献   

17.
Lead phosphate glasses singly doped with Dy3+ ions were studied. The samples were prepared in a glove box in order to eliminate hydroxyl groups. Local structures were examined using FT-IR. Excitation and luminescence spectra for Dy3+ ions in investigated lead phosphate glasses were registered. Luminescence intensity ratio Y/B related to 4F9/2→6HJ/2(where J=15, 13) transitions was determined and luminescence lifetime(τm) for the 4F9/2 state of Dy3+ ions were also measured.  相似文献   

18.
Lithium calcium borate (LiCaBO3) polycrystalline thermoluminescence (TL) phosphor doped with rare earth (Tb3+ and Dy3+) elements was synthesized by novel solution combustion synthesis. The reaction produced very stable crystalline LiCaBO3:D(D=Tb3+ and Dy3+) phosphors. These rare earth doped phosphors material showed maximum TL sensitivity with favorable glow curve shape. TL glow curve of X-ray irradiated that LiCaBO3:Tb3+ and LiCaBO3:Dy3+ samples showed two major well-separated glow peaks. The TL sensitivity of these phosphors to X-ray radiation was comparable with that of TLD-100(Harshaw). Photoluminescence spectra of LiCaBO3:Tb3+ and LiCaBO3:Dy3+ showed the characteristic Tb3+ and Dy3+ peaks respectively. TL response to X-ray radiation dose was linear up to 25 Gy.  相似文献   

19.
In the current article, we studied the effect of yttrium [Y3+] ions’ substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1?x Y2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, and 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO12], [ZrO6], [TiO6], and [YO6] clusters in the cubic lattice. The Y3+ ions’ effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba2+ by Y3+ ions may be due to the rise in oxygen vacancies.  相似文献   

20.
The phosphors that are able to convert vacuum ultraviolet(VUV) light into visible light are demanded for the development of novel displaying and lighting devices.NaYF4:Pr3+,Dy3+,NaGdF4:Pr3+,NaGdF4:Dy3+and NaGdF4:Pr3+,Dy3+were prepared by hydrothermal synthesis method and their luminescent properties in VUV-vis spectral region were investigated at room temperature.For NaYF4:Pr3+,Dy3+,no energy transfer process from Pr3+to Dy3+was observed.However,the introduction of Gd3+into the fluoride lattice led to intense Dy3+emissions upon Pr3+4f5d state excitation.Gd3+acted as an intermediate,resulting in efficient energy transfer from Pr3+to Dy3+in NaGdF4.Pr3+transferred most of its energy to Gd3+,and then the energy was transferred from Gd3+to Dy3+.So NaGdF4:Pr3+,Dy3+not only took full advantage of the intense Pr3+4f5d absorption,but converted the VUV excitation light into the near-white emission of Dy3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号