首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic approach was taken to investigate the morphology of NiO–yttria stabilized zirconia (YSZ) films deposited by a spray coating process. The final morphological aspects of anode films were influenced by the particle size of YSZ powders and the milling time of the slurries used for film deposition. YSZ powders with average particle size of 17 and 52 nm were obtained from powders calcined at 800 and 1000 °C, respectively. The results obtained by rheological studies pointed out that slurries prepared from YSZ powders calcinated at 1000 °C and milling time of 20 h had more stability. All slurries presented thixotropic and pseudoplastic behaviors.  相似文献   

2.
To cut down the energy consumption and processing period, Ni‐YSZ anode‐supported thin YSZ electrolyte SOFCs have been fabricated by an improved dip‐coating technique, in which the electrolyte layer was dip‐coated on green anode substrates instead of prefired ones, followed by co‐firing. The film formation mechanisms of dip‐coating were analyzed with liquid entrainment and capillary effect assumptions. According to the mechanisms, a typical YSZ electrolyte slurry formula of conventional dip‐coating technique was modified for the improved technique by increasing the binder content and the solid loading. With the improved dip‐coating technique, along with an optimized electrolyte slurry formula, a SOFC with dense electrolyte, revealing a maximum power density of 460 mW/cm2 at 800°C, was obtained. Factors affecting the coating layers were also investigated by SEM and AC impedance analyses.  相似文献   

3.
Intermediate temperature (600–800 °C) solid oxide fuel cell (SOFC) technology is often limited by inadequate gas transport in electrodes, and high ion transport resistance electrolytes. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc-assisted e-beam physical vapor deposition (FA-EBPVD) technologies, in combination with freeze-tape-casting, were used to fabricate SOFC anode/electrolyte bi-layers with functionally graded porous anode microstructures and thin film electrolytes favorable for both gas transport and low resistance. Traditionally-processed NiO/YSZ in addition to freeze-tape-cast NiO/YSZ anode substrates were fabricated and subsequently coated with thin film (<1–20 μm) YSZ via LAFAD and FA-EBPVD. LAFAD was found to be effective in applying thin (~1 μm) dense YSZ films on porous substrates at ~400 °C. FA-EBPVD produced relatively thick (~10–20 μm) dense YSZ coatings on porous substrates, with columnar morphology and nano-metrical grain size. A ~10 μm FA-EBPVD YSZ coating was observed to bridge NiO/YSZ surface pores of ~10 μm, which typically requires pre-filling prior to conventional thin film coating processes. Coated substrates exhibited negligible curvature, yielding flat anode/electrode bi-layers up to 2.5 cm in diameter. These results are presented with conderations for future SOFC development discussed.  相似文献   

4.
The electrochemical performance of an anode material for a solid oxide fuel cell (SOFC) depends highly on microstructure in addition to composition. In this study, a NiO–yttria‐stabilised zirconia (NiO–YSZ) composite with a highly dispersed microstructure and large pore volume/surface area has been synthesised by ultrasonic spray pyrolysis (USP) and its electrochemical characteristics has been investigated. For comparison, the electrochemical performance of a conventional NiO–YSZ is also evaluated. The power density of the zirconia electrolyte‐supported SOFC with the synthesised anode is ∼392 mW cm–2 at 900 °C and that of the SOFC with the conventional NiO–YSZ anode is ∼315 mW cm–2. The improvement is ∼24%. This result demonstrates that the synthesised NiO–YSZ is a potential alternative anode material for SOFCs fabricated with a zirconia solid electrolyte.  相似文献   

5.
A 500 nm thick thin film YSZ (yttria-stabilized zirconia) electrolyte was successfully fabricated on a conventionally processed anode substrate by spin coating of chemical solution containing slow-sintering YSZ nanoparticles with the particle size of 20 nm and subsequent sintering at 1100 °C. Incorporation of YSZ nanoparticles was effective for suppressing the differential densification of ultrafine precursor powder by mitigating the prevailing bi-axial constraining stress of the rigid substrate with numerous local multi-axial stress fields around them. In particular, adding 5 vol% YSZ nanoparticles resulted in a dense and uniform thin film electrolyte with narrow grain size distribution, and fine residual pores in isolated state. The thin film YSZ electrolyte placed on a rigid anode substrate with the GDC (gadolinia-doped ceria) and LSC (La0.6Sr0.4CoO3?δ) layers deposited by PLD (pulsed laser deposition) processes revealed that it had fairly good gas tightness relevant to a SOFC (solid oxide fuel cell) electrolyte and maintained its structural integrity during fabrication and operation processes. In fact, the open circuit voltage was 1.07 V and maximum power density was 425 mW/cm2 at 600 °C, which demonstrates that the chemical solution route can be a viable means for reducing electrolyte thickness for low- to intermediate-temperature SOFCs.  相似文献   

6.
A physico-chemical investigation of catalyst–Nafion® electrolyte interface of a direct methanol fuel cell (DMFC), based on a Pt–Ru/C anode catalyst, was carried out by XRD, SEM-EDAX and TEM. No interaction between catalyst and electrolyte was detected and no significant interconnected network of Nafion micelles inside the composite catalyst layer was observed. The influence of some operating parameters on the performance of the DMFC was investigated. Optimal conditions were 2 M methanol, 5 atm cathode pressure and 2–3 atm anode pressure. Power densities of 110 and 160 mW cm−2 were obtained for operation with air and oxygen, respectively, at temperatures of 95–100°C and with 1 mg cm−2 Pt loading.  相似文献   

7.
Electrophoretic deposition (EPD) of 8 mol% yttria‐stabilized zirconia (YSZ) electrolyte thin film has been carried out onto nonconducting porous NiO‐YSZ cermet anode substrate using a fugitive and electrically conducting polymer interlayer for solid oxide fuel cell (SOFC) application. Such polymer interlayer burnt out during the high‐temperature sintering process (1400°C for 6 h) leaving behind a well adhered, dense, and uniform ceramic YSZ electrolyte film on the top of the porous anode substrate. The EPD kinetics have been studied in depth. It is found that homogeneous and uniform film could be obtained onto the polymer‐coated substrate at an applied voltage of 15 V for 1 min. After the half‐cell (anode + electrolyte) is co‐fired at 1400°C, a suitable cathode composition (La0.65Sr0.3MnO3) thick film paste is screen printed on the top of the sintered YSZ electrolyte. A second stage of sintering of such cathode thick film at 1100°C for 2 h finally yield a single cell SOFC. Such single cell produced a power output of 0.91 W/cm2 at 0.7 V when measured at 800°C using hydrogen and oxygen as fuel and oxidant, respectively.  相似文献   

8.
Electrostatic spray deposition (ESD) was applied to fabricate a thin-layer (3 m thickness) yttria-stabilized zirconia (YSZ) electrolyte on a solid oxide fuel cell (SOFC) anode substrate consisting of nickel-YSZ cermet. Reducing the thickness of a state-of-the-art electrolyte, and thereby reducing the cell internal IR drop, is a promising strategy to make the intermediate temperature SOFC (ITSOFC) operating at 600–800 °C possible. About 8 mol% YSZ colloidal solution in ethanol was sprayed onto the substrate anode surface at 250–300 °C by ESD. After sintering the deposited layer at 1250–1400 °C for 17–6 h, the cathode layer, consisting of lanthanum strontium manganate (LSM), was sprayed or brush coated onto the electrolyte layer. Performance tests on the cell were carried out at 800 °C to evaluate the electrolyte layer formed by ESD. With a 97 H2/3 H2O mixture and air as fuel and oxidant gas, respectively, open circuit voltage (OCV) was found to be close to the theoretical value.  相似文献   

9.
Electrostatic spray deposition (ESD) was applied to fabricate a thin-layer of yttria-stabilized zirconia (YSZ) electrolyte on a solid oxide fuel cell (SOFC) anode substrate consisting of nickel-YSZ cermet. A colloidal solution of 8 mol% YSZ in ethanol was sprayed onto the substrate anode surface at 250–300 °C by ESD. After sintering the deposited layer at 1250–1400 °C for 1–2 h depending on temperature, the cathode layer, consisting of lanthanum strontium manganate (LSM), was sprayed or brush coated onto the electrolyte layer. Performance tests and AC impedance measurements of the complete cell were carried out at 800 °C to evaluate the density and conductance of the electrolyte layer formed by ESD. With a 97% H2/3% H2O mixture and air as fuel and oxidant gas, respectively, the open-circuit voltage (OCV) was close to theoretical and electrolyte impedance was about 0.23Ω cm2. A power density of 0.45 W cm−2 at 0.62 V was obtained. No abnormal degradation was observed after 170 h operation. The electrolyte sintering temperature and time did not significantly affect the electrolyte impedance. on leave from  相似文献   

10.
High-performance anode-supported tubular solid-oxide fuel cells (SOFCs) have been successfully developed and fabricated using slip casting, dip coating, and impregnation techniques. The effect of a dispersant and solid loading on the viscosity of the NiO/Y2O3–ZrO2 (NiO/YSZ) slurry is investigated in detail. The viscosity of the slurry was found to be minimum when the dispersant content was 0.6 wt% of NiO/YSZ. The effect of sintering temperature on the shrinkage and porosity of the anode tubes, densification of the electrolyte, and performance of the cell at different solid loadings is also investigated. A Ni/YSZ anode-supported tubular cell fabricated from the NiO/YSZ slurry with 65 wt% solid loading and sintered at 1380°C produced a peak power output of ∼491 and ∼376 mW/cm2 at 800°C in wet H2 and CH4, respectively. With the impregnation of Ce0.8Gd0.2O2 (GDC) nanoparticles, the peak power density increased to ∼1104 and ∼770 mW/cm2 at 800°C in wet H2 and CH4, respectively. GDC impregnation considerably enhances the electrochemical performance of the cell and significantly reduces the ohmic and polarization resistances of thin solid electrolyte cells.  相似文献   

11.
Yttria-stabilized zirconia (YSZ) thin films were prepared by conventional and modified dip-coating techniques followed by heating to an appropriate temperature in air. Scanning electron microscopy showed that films of the thickness ranging from 20 to 30 m were dense and crack-free. The electrical properties of the films were investigated by ac impedance spectroscopy. La0.8Sr0.2MnO3 paste was printed on to a YSZ electrolyte/anode assembly to create single fuel cells which were tested in the temperature range 650–800 °C. The results showed that both open circuit voltage (OCV) and maximum power density values of the cells with electrolytes produced by the modified dip coating were higher than those fabricated by conventional processing. At 800 °C, the OCV reached 0.98 V and a maximum power density of 190 mW cm–2 was attained, demonstrating that the modified dip coating process is a simple and cost-effective fabrication technique for IT-SOFCs, though further improvement is necessary.  相似文献   

12.
The dense electrolyte film with the rough surfaces for solid oxide fuel cell (SOFC) was fabricated on NiO/yttria‐stabilized zirconia (YSZ) anode substrate by using dual‐sized YSZ powders without additional effort to roughen electrolyte film. The dual‐sized YSZ powders consisted of the fine YSZ powder and the coarse YSZ powder at different weight ratios. Incorporation of the coarse YSZ powder into the fine YSZ powder is in order to increase the surface roughness of electrolyte film, and the surface roughness obviously increased with the increase of coarse YSZ powder. The rough surfaces resulted in an enlargement of the electrochemical active area. It was found that electrode polarization was reduced evidently and cell electrochemical performance was enhanced, as the surface roughness increased. However, the excessive coarse YSZ powder was not beneficial for densification of electrolyte film and thus the open‐circuit voltage (OCV) was declined. The cell with 17 wt.% coarse YSZ powder in the electrolyte exhibited the best performance and the maximum power density was 1,930 mW cm–2 at 800 °C.  相似文献   

13.
A tubular segmented‐in‐series (SIS) solid oxide fuel cell (SOFC) sub module for intermediate temperature (700–800 °C) operation was fabricated and operated in this study. For this purpose, we fabricated porous ceramic supports of 3 YSZ through an extrusion process and analyzed the basic properties of the ceramic support, such as visible microstructure, porosity, and mechanical strength, respectively. After that, we fabricated a tubular SIS SOFC single cell by using dip coating and vacuum slurry coating method in the case of electrode and electrolyte, and obtained at 800 °C a performance of about 400 mW cm–2. To make a sub module for tubular SIS SOFC, ten tubular SIS SOFC single cells with an effective electrode area of 1.1 cm2 were coated onto the surface of the prepared ceramic support and were connected in series by using Ag + glass interconnect between each single cell. The ten‐cell sub module of tubular SIS SOFC showed in 3% humidified H2 and air at 800 °C a maximum power of ca. 390 mW cm–2.  相似文献   

14.
A gas‐tight yttria‐stabilized zirconia (YSZ) electrolyte film was fabricated on porous NiO–YSZ anode substrates by a binder‐assisted slurry casting technique. The scanning electron microscope (SEM) results showed that the YSZ film was relatively dense with a thickness of 10 μm. La0.8Sr0.2MnO3 (LSM)–YSZ was applied to cathode using a screen‐print technique and the single fuel cells were tested in a temperature range from 600 to 800 °C. An open circuit voltage (OCV) of over 1.0 V was observed. The maximum power densities at 600, 700, and 800 °C were 0.13, 0.44, and 1.1 W cm–2, respectively.  相似文献   

15.
A porous yttria-stabilized zirconia (YSZ) ceramic supported single cell with a configuration of porous YSZ support layer coated with Ni/Ni–Ce0.8Sm0.2O1.9 (SDC) anode/YSZ/SDC bi-layer electrolyte/La0.6Sr0.4Co0.2Fe0.8O3−δ cathode was fabricated. The porosity, mechanical strength, and microstructure of porous YSZ ceramics were investigated with respect to the amount of poly(methyl methacrylate) (PMMA) used as a pore former. Porous YSZ ceramics with 56 vol.% PMMA showed a mechanical strength of 24 ± 3 MPa and a porosity of 37 ± 1%. The electrochemical properties of the single cell employing the porous YSZ support layer were measured using hydrogen and methane fuels, respectively. The single cell exhibited maximum power densities of 421 mW/cm2 in hydrogen and 399 mW/cm2 in methane at 800 °C. Moreover, at a current density of 550 mA/cm2, the cell maintained 91% of its initial voltage after operation in methane for 13 h at 700 °C.  相似文献   

16.
Bilayer electrolytes composed of a gadolinium-doped CeO2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO–YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La0.5Sr0.5CoO3–Ce0.9Gd0.1O1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm−2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 °C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 °C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced performance.  相似文献   

17.
A new proton conducting fuel cell design based on the BZCYYb electrolyte is studied in this research. In high‐performance YSZ‐based SOFCs, the Ni‐YSZ support plays a key role in providing required electrical properties and robust mechanical behavior. In this study, this well‐established Ni‐YSZ support is used to maintain the proton conducting fuel cell integrity. The cell is in a Ni‐YSZ (375 μm support)/Ni‐BZCYYb (20 μm anode functional layer)/BZCYYb (10 μm electrolyte)/LSCF‐BZCYYb (25 μm cathode) configuration. Maximum power density values of 166, 218, and 285 mW/cm2 have been obtained at 600°C, 650°C, and 700°C, respectively. AC impedance spectroscopy results show values of 2.17, 1.23, and 0.76 Ω·cm2 at these temperatures where the main resistance contributor above 600°C is ohmic resistance. Very fine NiO and YSZ powders were used to achieve a suitable sintering shrinkage which can enhance the electrolyte sintering. During cosintering of the support and BZCYYb electrolyte layers, the higher shrinkage of the support layer led to compressive stress in the electrolyte, thereby enhancing its densification. The promising results of the current study show that a new generation of proton conducting fuel cells based on the chemically and mechanically robust Ni‐YSZ support can be developed which can improve long‐term performance and reduce fabrication costs of proton conducting fuel cells.  相似文献   

18.
Slurries prepared by mixing organic additives with NiO/YSZ powders were deposited by spray coating onto an anode substrate obtained by tape casting to produce a NiO/YSZ anode functional layer with 40 wt.% NiO. The rheology and the chemical stability of slurries with two concentrations of polymethylmethacrylate (PMMA), 1 and 2 wt.%, were systematically studied, and the microstructures of the anode functional films obtained were compared. Rheological measurements showed that both slurries present pseudoplastic and thixotropic behaviors and that the 2 wt.% PMMA slurry is more homogeneous and maintains chemical stability over a longer period of time. The anode functional films showed good adherence and were free of cracks.  相似文献   

19.
The application of a thin film electrolyte layer with a thickness in the micrometer range could greatly improve current solid oxide fuel cells (SOFCs) in terms of operating temperature and power output. Since the achievable minimal layer thickness with conventional powder coating methods is limited to ∼5 μm, a variety of thin film methods have been studied, but results on regular large-scale anode substrates are still lacking in the literature. In this paper, a wet coating process is presented for fabricating gas-tight 1-2 μm thick 8YSZ electrolyte layers on a regular NiO/8YSZ substrate, with a rough surface, a high porosity and a large pore size. These layers were deposited in a similar way as conventional suspension based layers, but the essential difference includes the use of coating liquids (nano-dispersion, sol) with a considerably smaller particle size (85 nm, 60 nm, 35 nm, 6 nm). Successful deposition of such layers was accomplished by means of an innovative coating process, which involves the preparation of a hybrid polyvinyl alcohol/8YSZ membrane by dip-coating or spin-coating and subsequently burning out the polymer part at 500 °C. Results from He leak tests confirmed that the sintered layers posses a very low number of defects and with values in the range 10−4-10−6 (hPa dm3)/(s cm2) the gas-tightness of the thin film layers is satisfactory for fuel cell operation. Moreover, preliminary results have also indicated a potential reduction of the sintering temperature from 1400 °C to the range 1200-1300 °C, using the presented coating process.  相似文献   

20.
Dense, crack-free, ~7.5 μm thick, 8 mol% yttria stabilized zirconia (YSZ) film was aerosol deposited on porous NiO-YSZ anode substrates at room temperature without additional high-temperature sintering. The films’ microstructures and gas permeability were observed after annealing at various temperatures. The dense, gas-tight film that was observed up to 1000 °C became porous at higher temperatures probably due to structural instability related to oxygen non-stoichiometry. A cell using such film as electrolyte showed an open cell voltage of 1.10 V and a maximum power density of 0.51 W/cm2 at 750 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号