首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to achieve a better understanding of plume characteristics of LIPS-300 ion thruster, the beam current density, ion energy and electron number density of LIPS-300 ion thruster plume are studied with an Advanced Plasma Diagnostics System(APDS) which allows for simultaneous in situ measurements of various properties characterizing ion thruster, such as plasma density, plasma potential, plasma temperature and ion beam current densities, ion energy distribution and so on. The results show that the beam current density distribution has a double‘wing' shape. The high energy ions were found in small scan angle, while low energy ions were found in greater scan angle. Electron number density has a similar shape with the beam current density distribution.  相似文献   

2.
This study presents the Langmuir and Faraday probe measurements conducted to determine the plume characteristics of the BUSTLab microwave electrothermal thruster (MET). The thruster, designed to operate at 2.45 GHz frequency, is run with helium, argon and nitrogen gases as the propellant. For the measurements, the propellant volume flow rate and the delivered microwave power levels are varied. Experiments with nitrogen gas revealed certain operation regimes where a very luminous plume is observed. With the use of in-house-built Langmuir probes and a Faraday probe with guard ring, thruster plume electron temperature, plasma density and ion current density values are measured, and the results are presented. The measurements show that MET thruster plume effects on spacecraft will likely be similar to those of the arcjet plume. It is observed that the measured plume ion flux levels are very low for the high volume flow rates used for the operation of this thruster.  相似文献   

3.
To reveal the argon plasma characteristics within the entire region of an electron cyclotron resonance(ECR) ion source, the plasma parameters were diagnosed using a bended Langmuir probe with the filament axis perpendicular to the diagnosing plane. Experiments indicate that,with a gas volume flow rate and incident microwave power of 4 sccm and 8.8 W, respectively,the gas was ionized to form plasma with a luminous ring. When the incident microwave power was above 27 W, the luminous ring was converted to a bright column, the dark area near its axis was narrowed, and the microwave power absorbing efficiency was increased. This indicates that there was a mode transition phenomenon in this ECR ion source when the microwave power increased. The diagnosis shows that, at an incident microwave power of 17.4 W, the diagnosed electron temperature and ion density were below 8 eV and 3?×?10~(17) m~(-3), respectively, while at incident microwave power levels of 30 W and 40 W, the maximum electron temperature and ion density were above 11 eV and 6.8?×?10~(17) m~(-3), respectively. Confined by magnetic mirrors, the higher density plasma region had a bow shape, which coincided with the magnetic field lines but deviated from the ECR layer.  相似文献   

4.
An indirect method is proposed for measuring the relative energy spectrum of the pulsed electron beam of a plasma focus device. The Bremsstrahlung x-ray, generated by the collision of electrons against the anode surface, was measured behind lead filters with various thicknesses using a radiographic film system. A matrix equation was considered in order to explain the relation between the x-ray dose and the spectral amplitudes of the electron beam. The electron spectrum of the device was measured at 0.6 mbar argon and 22 k V charging voltage, in four discrete energy intervals extending up to 500 ke V. The results of the experiments show that most of the electrons are emitted in the 125–375 ke V energy range and the spectral amplitude becomes negligible beyond 375 ke V.?  相似文献   

5.
A millimeter wave solid state source—far infrared laser combined interferometer system (MFCI) consisting of a three-channel 890 GHz hydrogen cyanide (HCN) laser interferometer and a three-channel 340 GHz solid state source interferometer (SSI) is developed for real-time line-integrated electron density feedback and electron density profile of the EXL-50 spherical tokamak device. The interferometer system is a Mach–Zehnder type, with all probe-channels measured vertically, covering the plasma magnetic axis to the outermost closed magnetic plane. The HCN laser interferometer uses an HCN laser with a frequency of 890 GHz as a light source and modulates a 100 kHz beat signal by a rotating grating, giving a temporal resolution of 10 μs. The SSI uses two independent 340 GHz solid-state diode sources as the light source, the frequency of the two sources is adjustable, and the temporal resolution of SSI can reach 1 μs by setting the frequency difference of the two lasers at 1 MHz. The main optical path of the two interferometers is compactly installed on a set of double-layer optical platform directly below EXL-50. Dual optical path design using corner cube reflectors avoids the large support structures. Collinear the probe-beams of two wavelengths, then the phase error caused by vibration can be compensated. At present, the phase noise of the HCN Interferometer is 0.08 rad, corresponding to a line-integrated electron density of 0.88 × 1017 m−2, one channel of measuring result was obtained by the MFCI system, and the highest density measured is about 0.7 × 1019 m−2.  相似文献   

6.
The measuring principle and experimental results of the enthalpy probe technique for thermal plasma diagnostics are presented. Its calibration and errors are discussed. Typical results are presented for the system operation in an Ar/H2(5 % H2) plasma arc jet under a reactor chamber pressure of 101.3 kPa. The plasma temperature and velocity profiles are measured. The center temperature and velocity are 6600 K and 850 m/s for plasma power 9 kW at axial locationof 17 mm.  相似文献   

7.
The effect of background fluctuation on velocity diagnostics is discussed and studied. The kinetic theory of Mach probe (MP) and the theory of BGK mode are combined to evaluate how the measurement of MP is affected by electrostatics fluctuation. It is found that the quantity of speed by the MP model is closer to the effective velocity in the picture of momentum flux rather than the real mean velocity, while, with high fluctuation, the fitting parameter of MP's exponential formula should be corrected.  相似文献   

8.
Optical emission spectroscopy is a passive diagnostic technique,which does not perturb the plasma state.In particular,in a hydrogen plasma,Balmer-alpha(Hα) emission can be easily measured in the visible range along a line of sight from outside the plasma vessel.Other emission lines in the visible spectral range from hydrogen atoms and molecules can be exploited too,in order to gather complementary pieces of information on the plasma state.Tomography allows us to capture bi-dimensional structures.We propose to adopt an emission spectroscopy tomography for studying the transverse profiles of magnetized plasmas when Abel inversion is not exploitable.An experimental campaign was carried out at the Thorello device,a simple magnetized torus.The characteristics of the profile extraction method,which we implemented for this purpose are discussed,together with a few results concerning the plasma profiles in a simply magnetized torus configuration.  相似文献   

9.
Modification of exposure conditions downstream in the diffusion chamber has been performed in helicon antenna-excited helium plasma by adjusting the magnetic field(intensity and geometry).In the inductively coupled mode(H mode), a reduction in ion and heat fluxes is found with increasing magnetic field intensity, which is further explained by the more highly magnetized ions off-axis around the last magnetic field lines(LMFL). However, in helicon wave mode(W mode), the increase in magnetic field intensity can dramatically increase the ion and heat fluxes.Moreover, the effect of LMFL geometry on exposure conditions is investigated. In H mode with contracting LMFL, off-axis peaks of both plasma density and electron temperature profiles shift radially inwards, bringing about a beam with better radial uniformity and higher ion and heat fluxes. In W mode, although higher ion and heat fluxes can be achieved with suppressed plasma cross-field diffusion under converging LMFL, the poor radial uniformity and a small beam diameter will limit the size of samples suitable for plasma irradiation experiments.  相似文献   

10.
The method of electromagnetic diagnostics is suggested, which promises to perform super Fresnel resolution of plasma inhomogeneities, that is resolution, distinguishing details smaller than Fresnel radius. To realize super Fresnel resolution it is suggested to represent the wave field of the source in the form of double weighted Fourier transform (DWFT), deals with Fourier transform simultaneously in coordinates of the sources and in coordinates of receivers. Important property of DWFT is that DWFT transfers into geometrical optics (GO) approximation for smooth inhomogeneous media and becomes equivalent to the Rytov or to small angle Born approximation in the case of weak inhomogeneities. As a result, inverse DWFT allows obtaining linear integral of plasma density both for large scale inhomogeneities, as in GO approximation, and also for inhomogeneities, whose transverse sizes are small as compared with Fresnel radius. DWFT embraces also the results of the phase screen method and allows to take into account phenomenon of micro-multirayness and to describe strong amplitude fluctuations.Using inverse DWFT algorithm, the authors study resolution of systems consisting of discrete sources and receivers. Both analytical estimates and the results of numerical modeling evidence opportunity to observe small scale plasma inhomogeneities with super Fresnel resolution.  相似文献   

11.
束流剖面监测仪是监测带电粒子束在传输过程中状态变化的一种装置。该装置的叶片式探针(以下简称探针)安装在粒子加速器、同位素分离器和离子注入机等监测位置上并由它把截获的信号显示在示波器屏上便可观察到沿束横截面束流密度分布曲线(以下简称束形)。通过束形变化我们可定性地判断束流强度、束流品质和它在束管道中的相对位置等。因此,它在国外各种类型的粒子加速器上广为使用。  相似文献   

12.
The characteristics of electrons play a dominant role in determining the ionization and acceleration processes of plasmas. Compared with electrostatic diagnostics, the optical method is independent of the radio frequency(RF) noise, magnetic field, and electric field. In this paper, an optical emission spectroscope was used to determine the plasma emission spectra, electron excitation energy population distributions(EEEPDs), growth rates of low-energy and highenergy electrons, and their intensity jumps with input powers. The 56 emission lines with the highest signal-to-noise ratio and their corresponding electron excitation energy were used for the translation of the spectrum into EEEPD. One discrete EEEPD has two clear different regions,namely the low-energy electron excitation region(neutral lines with threshold energy of13–15 eV) and the high-energy electron excitation region(ionic lines with threshold energy?19 e V). The EEEPD variations with different diameters of discharge tubes(20 mm, 40 mm,and 60 mm) and different input RF powers(200–1800 W) were investigated. By normalized intensity comparison of the ionic and neutral lines, the growth rate of the ionic population was higher than the neutral one, especially when the tube diameter was less than 40 mm and the input power was higher than 1000 W. Moreover, we found that the intensities of low-energy electrons and high-energy electrons jump at different input powers from inductively coupled(H) mode to helicon(W) mode; therefore, the determination of W mode needs to be carefully considered.  相似文献   

13.
This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma. Dust in a plasma has a large impact on the properties of the plasma. According to a probe diagnostic experiment on a dust-free plasma combined with machine learning, an experiment on a dusty plasma is designed and carried out. Using a specific experimental device, dusty plasma with a stable and controllable dust particle density is generated. A Langmuir probe is used to measure the electron density and electron temperature under different pressures, discharge currents, and dust particle densities. The diagnostic result is processed through a machine learning algorithm,and the error of the predicted results under different pressures and discharge currents is analyzed,from which the law of the machine learning results changing with the pressure and discharge current is obtained. Finally, the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.  相似文献   

14.
Hollow cathodes serve as electron sources in Hall thrusters,ion thrusters and other electric propulsion systems.One of the vital problems in their application is the cathode erosion.However,the basic erosion mechanism and the source of high-energy ions cause of erosion are not fully understood.In this paper,both potential measurements and simulation analyses were performed to explain the formation of high-energy ions.A high-speed camera,a single Langmuir probe and a floating emissive probe were used to determine the steady and oscillatory plasma properties in the near-field plume of a hollow cathode.The temporal structure,electron temperature,electron density,and both static and oscillation of plasma potentials of the plume have been obtained by the diagnostics mentioned above.The experimental results show that there exists a potential hill (about 30 V) and also severe potential oscillations in the near-plume region.Moreover,a simple 2D particle-in-cell model was used to analyze the energy transition between the potential hill and/or its oscillations and the ions.The simulation results show that the energy of ions gained from the static potential background is about 20 eV,but it could reach to 60 eV when the plasma oscillates.  相似文献   

15.
Plasma mass separation requires a lot of diagnostic techniques that not only demonstrate the separation effect but also show the efficiency of the process. During the test experiments, plasma flux to be separated may contain neutral particles that avoid the separation process due to their insensitivity to electromagnetic field. We present the diagnostics of the lost substance in experiments on plasma mass separation. The obtained data of the diagnostics helps determine the law of particle evaporation from the plasma source. We show that neutral flux is unable to distort the result of separation diagnostics. The presented approach can be used in experiments aimed at enhancing the separation effect and achieving target productivity for industry applications.  相似文献   

16.
The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.  相似文献   

17.
We present in this paper the comparison of an electric double layer (DL) in argon helicon plasma and magnetized direct current (DC) discharge plasma. DL in high-density argon helicon plasma of 13.56 MHz RF discharge was investigated experimentally by a floating electrostatic probe and local optical emission spectroscopy (LOES). The DL characteristics at different operating parameters, including RF power (300–1500 W), tube diameter (8–60 mm), and external magnetic field (0–300 G), were measured. For comparison, DL in magnetized plasma channel of a DC discharge under different conditions was also measured experimentally. The results show that in both cases, DL appears in a divergent magnetic field where the magnetic field gradient is the largest and when the plasma density is sufficiently high. DL strength (or potential drop of DL) increases with the magnetic field in two different structures. It is suggested that the electric DL should be a common phenomenon in dense plasma under a gradient external magnetic field. DL in magnetized plasmas can be controlled properly by magnetic field structure and discharge mode (hence the plasma density).  相似文献   

18.
The triple Langmuir probe enables measurements of the transient plasma parameters over time at a point of interest. We demonstrate how these measurements can be easily combined to obtain a visualization of the overall plasma behavior of a pulsed plasma thruster. Through this, it is possible to identify features in the expansion of the plasma such as the canting angle of the plume. We also identified the early arrival of a negatively canted low-density plasma plume. The 2D profiles also reveal data that would otherwise be obscured by other planes in optical measurements.  相似文献   

19.
Accurate magnetic diagnostics are essential to perform reliable operation of any tokamak. The ITER magnetic diagnostics include a wide variety of sensors located on the inner and outer surfaces of the vacuum vessel, in the divertor cassettes and in the casing of the toroidal field coils. As the measurement accuracy of the inner set of magnetic sensors might be compromised by various radiation effects and high heat loads, the complementary ex-vessel set is essential to provide backup information. This paper is an overview of the ex-vessel magnetic diagnostic which consists mainly of pick-up coils, steady state sensors, Rogowski coils in the toroidal field coil casing and fibre optic current sensors. The work presented aims at designing these sensors to meet the performance requirements in spite of the constraints due to the tokamak environment. The manufacturing constraints and the positioning requirements for all the ex-vessel magnetic sensors are described. The use and expected accuracy of the entire ex-vessel magnetic diagnostic is assessed in terms of magnetic equilibrium reconstruction and plasma current measurement precision.  相似文献   

20.
Due to the growing interest in studying the compression and disruption of the plasma filament in magnetic fusion devices and Z-pinches, this work may be important for new developments in the field of controlled thermonuclear fusion. Recently, on a coaxial plasma accelerator, we managed to obtain the relatively long-lived (∼300 μs) plasma filaments with its self-magnetic field. This was achieved after modification of the experimental setup by using high-capacitive and low-inductive energy storage capacitor banks, as well as electrical cables with low reactive impedance. Furthermore, we were able to avoid the reverse reflection of the plasma flux from the end of the plasma accelerator by installing a special plasma-absorbing target. Thus, these constructive changes of the experimental setup allowed us to investigate the physical properties of the plasma filament by using the comprehensive diagnostics including Rogowski coil, magnetic probes, and Faraday cup. As a result, such important plasma parameters as density of ions and temperature of electrons in plasma flux, time dependent plasma filament's azimuthal magnetic field were measured in discharge gap and at a distance of 23.5 cm from the tip of the cathode. In addition, the current oscillograms and I–V characteristics of the plasma accelerator were obtained. In the experiments, we also observed the charge separation during the acceleration of plasma flow via oscillograms of electron and ion beam currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号