共查询到4条相似文献,搜索用时 2 毫秒
1.
《等离子体科学和技术》2017,(3)
Polycrystalline diamond(PCD) films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition(MPCVD) at different process parameters,and their thermal conductivity(TC) is evaluated by a laser flash technique(LFT) in the temperature range of230-380 K.The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon(a-C) presence in the spectra.Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples,respectively.TC,as high as 1950 ± 230 W m~(-1) K~(-1) at room temperature,is measured for the most perfect material.A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established. 相似文献
2.
《等离子体科学和技术》2019,21(10):105502-60
A new pulsed chemical vapor deposition(PCVD) process has been developed to fabricate iron(Fe) and iron carbide(Fe_(1-x)C_x) thin films at low temperature range from 150 ℃ to 230 ℃.The process employs bis(1,4-di-tert-butyl-1,3-diazabutadienyl)iron(Ⅱ) as iron source and hydrogen gas or hydrogen plasma as the coreactant.The films deposited with hydrogen gas are demonstrated polycrystalline with body-centered cubic Fe.However,for the films deposited with hydrogen plasma,the amorphous phase of iron carbide is obtained.The influence of the deposition temperature on iron and iron carbide characteristics have been investigated. 相似文献
3.
Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is known to inhibit the nucleation of diamond and enhance the formation of graphite, we were able to grow relatively thick films (-1.2 mm). The films were easily detachable from the substrates. The poor adhesion made it possible to obtain free-standing diamond films without chemical etching. Raman spectroscopy showed the 1332 cm^-1 characteristic Raman peak of diamond and the 1580 cm^-1, 1350 cm^-1 bands of graphite on the growth surface and backside of the films, respectively. By energy dispersive X-ray spectroscopy it was only possible to detect iron on the back of the films, but not on the surface. The role of iron in the film growth is discussed. 相似文献
4.
A high growth rate fabrication of diamond-like carbon(DLC)films at room temperature was achieved by helicon wave plasma chemical vapor deposition(HWP-CVD)using Ar/CH_4gas mixtures.The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy.The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe.The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed.The growth rate of the DLC films reaches a maximum value of 54μm h~(-1)at the CH_4flow rate of 85 sccm,which is attributed to the higher plasma density during the helicon wave plasma discharge.The CH and H_αradicals play an important role in the growth of DLC films.The results show that the H_αradicals are beneficial to the formation and stabilization of C=C bond from sp~2to sp~3. 相似文献